Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:17:51.609Z Has data issue: false hasContentIssue false

Interactions of Potential Protein Cancer Biomarker Survivin with Plasmonic Nanoparticles and Its Dynamics in Cancer Cells Studied Using Fluorescence Molecular-Beacon Probes, Gated-RET and EQCN Methods

Published online by Cambridge University Press:  13 February 2015

Magdalena Stobiecka*
Affiliation:
Department of Biophysics, Warsaw University of Life Sciences (SGGW), Warsaw 02776, Poland.
Agata Chalupa
Affiliation:
Institute of Nanoparticle Nanocarriers, Barczewo 11010, Poland.
Beata Dworakowska
Affiliation:
Department of Biophysics, Warsaw University of Life Sciences (SGGW), Warsaw 02776, Poland.
Get access

Abstract

The protein survivin (Sur) has been considered as a potential cancer biomarker due to its involvement in disrupting normal cell cycle by stimulating proliferation and inhibiting cell apoptosis. In this work, we have focused on exploring novel platforms for sensitive monitoring of Sur expression, based on molecular beacons and protein modulation of plasmon-controlled fluorescence. In this framework, we show that Sur can be employed in gating the resonance energy transfer (gRET) between fluorescein isothiocyanate probe dye (FITC) and plasmonic citrate-capped gold nanoparticles (AuNP@Cit). Furthermore, we have designed fluorescent dye-bearing molecular beacons (MBs) targeting nucleotides of the survivin mRNA. The antisense oligonucleotide complementary to the target sequence, inserted in the loop area of the hairpin MB structure, has enabled the fluorescence turn-ON MB switching in the presence of the target, thus signaling the high Sur mRNA levels and enhanced Sur protein expression.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sah, N. K., Khan, Z., Khan, G. J. and Bisen, P. S., Cancer Lett. 244, 164171 (2006).CrossRefGoogle Scholar
Mita, A. C., Mita, M. M., Nawrocki, S. T. and Giles, F. J., Clin. Cancer Res. 14, 50005005 (2008).CrossRefGoogle Scholar
Altieri, D. C., Nature Reviews Cancer 8, 6170 (2008).CrossRefGoogle Scholar
Altieri, D. C., Trends in Molecular Medicine 7, 542547 (2001).CrossRefGoogle Scholar
Olie, R. A., Simoes-Wust, A. P., Baumann, B., Leech, S. H., Fabbro, D., Stahel, R. A. and Zangemeister-Wittke, U., Cancer Res. 60, 28052809 (2000).Google Scholar
Gianani, R., Jarboe, E., Orlicky, D., Frost, M., Bobak, J., Lehner, R. and Shroyer, K. R., Human Pathology 32, 119125 (2001).CrossRefGoogle Scholar
Kappler, M., Kotzsch, M., Bartel, F., Fussel, S., Lautenschlager, C., Schmidt, U., Wurl, P., Bache, M., Schmidt, H., Taubert, H. and Meye, A., Clin. Cancer Res. 9, 10981104 (2003).Google Scholar
Fu, S., Cai, J., Tu, Z., Wang, Y., Deng, L., Liang, Z., Lin, Z. and Gong, X., Chinese-German Journal of Clinical Oncology 7, P523P526 (2008).CrossRefGoogle Scholar
Piao, Y., Liu, F. and Seo, T. S., ACS Appl. Mater. Interfaces 4, 67856789 (2012).CrossRefGoogle Scholar
Liu, J., Zhou, H., Xu, J.-J. and Chen, H.-Y., Analyst 137, 39403945 (2012).CrossRefGoogle Scholar
Li, X.-L., Shan, S., Xiong, M., Xia, X.-H., Xu, J.-j. and Chen, H.-Y., Lab Chip 13, 38683875 (2013).CrossRefGoogle Scholar
Stobiecka, M., Biosens. Bioelectron. 55, 379385 (2014).CrossRefGoogle Scholar