Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T09:18:24.353Z Has data issue: false hasContentIssue false

Interaction of Ni(II,III) and Sol-Gel Derived ZrO2 in Ni/ZrO2 Catalyst System

Published online by Cambridge University Press:  15 February 2011

H.C. Zeng
Affiliation:
Department of Chemical Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 0511
J. Lin
Affiliation:
Department of Physics, Faculty of Science National University of Singapore, 10 Kent Ridge Crescent, Singapore 0511
W.K. Teo
Affiliation:
Department of Chemical Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 0511
F.C. Loh
Affiliation:
Department of Physics, Faculty of Science National University of Singapore, 10 Kent Ridge Crescent, Singapore 0511
K.L. Tan
Affiliation:
Department of Physics, Faculty of Science National University of Singapore, 10 Kent Ridge Crescent, Singapore 0511
Get access

Abstract

NiO/ZrO2 catalyst has a selectivity for producing higher hydrocarbons, whereas NiO on classical supports gives rise to methanation of CO + H2 mixture. In this study, tetragonal and monoclinic ZrO2 gel carriers have been synthesized using sol-gel method. The interaction of nickel ions with a sol-gel derived catalyst support has been investigated using FTIR, DTA, and XPS. It is found that the nickel ions diffuses into the ZrO2 continuously over 400 to 600°C for both tetragonal and monoclinic ZrO2, and forms a thermodynamically stable Ni/ZrO2 solid solution at elevated calcination temperatures. Higher nickel surface contents are observed in tetragonal ZrO2. In addition to Ni2+, Ni3+ ions are also detected in Ni/ZrO2 system. Cation ratio of Ni2+/Ni3+ peaks at 700°C in the tetragonal ZrO2. In the monoclinic case, the ratio remains constant at different elevated temperatures. The diffusion activation energy for Ni(II,III) on both tetragonal and monoclinic in ZrO2 is 0.40 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mercera, P.D. L, Ommen, J.G. van, Doesburg, E.B.M., Burggraaf, A.J., and Ross, J.R.H., Applied Catalysis 71, 363 (1991).Google Scholar
2. Mercera, P.D. L, Ommen, J.G. van, Doesburg, E.B.M., Burggraaf, A.J. and Ross, J.R.H., Applied Catalysis 57, 127 (1990).Google Scholar
3. Zeng, H.C. and Shi, S., J. Non-Cryst. Solids (1995) in press.Google Scholar
4. Zeng, H.C., Lin, J., Teo, W.K., Loh, F.C., and Tan, K.L., J. Non-Cryst. Solids (1994) in press.Google Scholar
5. Tanabe, K., Mater. Chem. Phys. 13, 347 (1985).Google Scholar
6. Zeng, H.C., Lin, J., Teo, W.K., Wu, J.C., and Tan, K.L., J. Mater. Res. 10, (1995) in press.Google Scholar
7. Turlier, P., Praliaud, H., Moral, P., Martin, G.A. and Dalmon, J.A., Appl. Catal. 19, 287 (1985).Google Scholar
8. Gavalas, G.R., Phichitkul, C. and Voecks, G.E., J. Catal. 88, 54 (1984).Google Scholar
9. Smith, K.E., Kershaw, R., Dwight, K. and Wold, A., Mater. Res. Bull. 22, 1125 (1987).Google Scholar
10. Narayanan, S. and Sreekanth, G., J. Chem. Soc., Faraday Trans. 1,85, 3785 (1985).Google Scholar
11. Marginean, P. and Olariu, A., J. Catal. 95, 1 (1985).Google Scholar
12. Bruce, L.A., Hope, G.J. and Mathews, J.F., Applied Catalysis 8, 349 (1983).Google Scholar
13. Atik, M., Zarzycki, J. and R'Kha, C., J. Mater. Sci. Lett. 13, 266 (1994).Google Scholar
14. Sakka, S., J. Non-Cryst. Solids 73, 651 (1985).Google Scholar
15. Dislich, H. and Hussmann, E., Thin Solid Films 77, 129 (1981).Google Scholar
16. Izumi, K., Murakami, M., Deguchi, T. and Morita, A., J. Am. Ceram. Soc. 72, 1465 (1989).Google Scholar
17. Guinebretiere, R., Dauger, A., Lecomte, A. and Vesteghem, H., J. Non-Cryst. Solids 147&148 542 (1992).Google Scholar
18. Yamada, K., Chow, T.Y., Horihata, T. and Nagata, M., J. Non-Cryst. Solids 100, 316 (1988).Google Scholar
19. Debsikdar, J.C., J. Non-Cryst. Solids 86, 231 (1986).Google Scholar
20. Phillippi, C.M. and Mazdiyasni, K.S., J. Am. Ceram. Soc. 54, 254 (1971).Google Scholar
21. Arena, F., Licciardello, A. and Parmalina, A., Catalysis Letters 6, 139 (1990).Google Scholar
22. Torrisi, A., Cavallaro, A., Licciardello, A., Perniciaro, A. and Pignataro, S., Surf. Interface Anal. 10, 306 (1987).Google Scholar
23. Christie, A.B. in Methods of Surface Analysis edited by Walls, J.M. (Cambridge University Press, New York, 1988), p. 127.Google Scholar
24. Webb, T. L and Kruger, J.E. in Differential Thermal Analysis. Vol.1 Fundamental Aspects, edited by Mackenzie, R.C. (Academic Press, London, 1970) ch. 10, p. 330.Google Scholar
25. Beck, C.W., Am. Miner. 35, 985 (1950).Google Scholar
26. Mallya, R.W. and Murthy, A.R.V., J. Indian Inst. Sci. 43, 87 (1961).Google Scholar
27. Barr, T. L, J. Vac. Sci. Technol. A9, 1793 (1991).Google Scholar
28. Mayer, J.W. and Lau, S.S., Electronic Materials Science (Maxwell-Macmillan, New York, 1990), p. 183.Google Scholar