Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T17:46:19.479Z Has data issue: false hasContentIssue false

Interaction of Magnetic Impurities with Surfaces

Published online by Cambridge University Press:  15 February 2011

L. Szunyogh
Affiliation:
H.H. Wills Physics Laboratory, University of Bristol, Royal Fort, Tyndall Avenue, Bristol BS8 1TL, UK Department of Theoretical Physics, Technical University Budapest, Budafoki út 8, H-1521, Budapest, Hungary, [email protected]
B.L. Györffy
Affiliation:
H.H. Wills Physics Laboratory, University of Bristol, Royal Fort, Tyndall Avenue, Bristol BS8 1TL, UK
Get access

Abstract

The interaction of a magnetic (Fe) impurity with the surface of a non-magnetic (Au) semi-infinite host is investigated in terms of fully relativistic spin-polarized first principles calculations. It is shown that the surface induces a magnetic anisotropy on the impurity which is considerably larger than in the bulk. It is also found that the anisotropy constant K(d) is an oscillating function of the distance d between the impurity and the surface with an amplitude which falls as 1/d2 and a period which is determined by the shape of the Fermi Surface of the bulk Au host. However, the question still remains open whether the magnitude of the anisotropy energy is sufficiently large to explain the thickness dependence of the Kondo amplitude B in thin films of dilute FecAu1-c alloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chen, Guanlong and Giordano, N., Phys. Rev. Lett. 66, 209 (1991).Google Scholar
2. DiTusa, J.F., Lin, K., Park, M., Isaacson, M.S. and Parpia, J.M., Phys. Rev. Lett. 68, 1156 (1992).Google Scholar
3. Újsághy, O., Zawadowski, A. and Györffy, B.L., Phys. Rev. Lett. 76, 2378 (1996).Google Scholar
4. Giordano, N., Phys. Rev. B. 53, 2487 (1996).Google Scholar
5. Blachly, M.A. and Giordano, N., Europhys. Lett. 27, 687 (1994); Phys. Rev. B 49, 6788 (1994); Physica (Amsterdam) 194B-196B, 983 (1994).Google Scholar
6. Szunyogh, L., Újfalussy, B. and Weinberger, P., Phys. Rev. B 51, 9552 (1995).Google Scholar
7. Szunyogh, L., Újfalussy, B., Weinberger, P. and Kollár, J., J. Phys.: Condens. Mat. 6, 3301 (1994).Google Scholar
8. Mackintosh, A.R. and Andersen, O.K. in Electrons at the Fermi Surface, edited by Springford, M. (Cambridge University Press, Cambridge, England, 1980), p. 149;Google Scholar
Weinert, M., Watson, R.E., and Davenport, J.W., Phys. Rev. B 32, 2115 (1985).Google Scholar
9. Lang, N.D. and Kohn, W., Phys. Rev. B 1, 4555 (1970); 3, 1215 (1971); 7, 3541 (1973).Google Scholar
10. Lloyd, P., Proc. Phys. Soc. 90, 207 (1967).Google Scholar
11. Lighthill, M.J., Fourier Analysis and Generalised Functions, (Cambridge University Press, 1962) pp. 5157.Google Scholar
12. Halse, M.R., Philos. Trans. Roy. Soc. London A 265, 507 (1969).Google Scholar
13. Bruno, P. and Chappert, C., Phys Rev. Lett. 67, 1602 (1991).Google Scholar
14. Bruno, E. and Györffy, B.L., J. Phys.: Condens. Matter 5, 2109 (1993).Google Scholar
15. Unguris, J., Celotta, R.J. and Pierce, D.T., J. Appl. Phys. 75, 6437 (1994).Google Scholar
16. Szunyogh, L., Újfalussy, B., Weinberger, P. and Sommers, C., Phys. Rev. B 54, 6430 (1996).Google Scholar
17. Brooks, M.S.S., Physica B 130, 6 (1985).Google Scholar