Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T07:36:45.717Z Has data issue: false hasContentIssue false

The interaction of C60 with Si(111) and Co/Si(111)

Published online by Cambridge University Press:  15 March 2011

M.A.K. Zilani
Affiliation:
Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542
H. Xu
Affiliation:
Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542
X.S. Wang
Affiliation:
Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542
A.T.S. Wee
Affiliation:
Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542
Get access

Abstract

We have studied the interaction of C60 with clean Si(111) and sub-monolayer Co covered Si(111) using scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). Our STM results indicate that C60 has little mobility at room temperature (RT) on Co/Si(111). After annealing to 450 °C, STM images show a regular arrangement of partially decomposed C60. XPS reveals a partial decomposition of C60 on Co/Si(111) at 520 °C, and total decomposition to form a SiC-3×3 phase at 720 °C. These results show that Co catalyses C60 decomposition resulting in the formation of the ordered SiC-3×3 phase ∼200 °C below that on clean Si(111).

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Gimzewski, J. K., Modesti, S., and Schlittler, R. R., Phys. Rev. Lett. 72, 1036 (1994).Google Scholar
2 Alman, E. I. and Colton, R. J., Surf. Sci. 279, 49 (1992).Google Scholar
3 Hashizume, T. and Sakurai, T., J. Vac. Sci. Technol. B12, 1992 (1994).Google Scholar
4 Chen, Dong and Sarid, Dror, Phys. Rev. B49, 7612 (1994).Google Scholar
5 Li, Y. Z., Patrin, U. C., Chander, M., Weaver, J. H., Chibante, L. P. F., and Smalley, R. E., Science 252, 547 (1991).Google Scholar
6 Pascual, J. I., Gomez-Herrero, J. and Baro, A. M., Surf. Sci. 397, L267 (1998).Google Scholar
7 Suto, S., Sakamoto, K., Kondo, D., Wakita, T., Kimura, A., Kakizaki, A., Hu, C. -W. and Kasuya, A., Surf. Sci. 438, 242 (1999).Google Scholar
8 Yang, Uianshu, Wang, Xue-sen, Zhai, Guang-Jie, Cue, Nelson and Wang, Xun, Surf. Sci. 476, 1 (2001).Google Scholar
9 Upward, M. D., Moriarty, P., and Beton, P. H., Phys. Rev. B56, R1704 (1997).Google Scholar
10 Dunn, A. W., Svensson, E. D., Dekker, C., Surf. Sci. 498, 237 (2002).Google Scholar
11 Li, Y. Z., Chander, M., Patrin, J. C., Weaver, J. H., Chibante, L. P. F. and Smalley, R. E., Phys. Rev. B45, 13837 (1992).Google Scholar
12 Cepek, C., Goldoni, A., and Modesti, S., Phys. Rev. B53, 7466 (1996).Google Scholar
13 Cepek, C., Schiavuta, P., Sancrotti, M. and Pedio, M., Phys. Rev. B60, 2068 (1999).Google Scholar
14 Ong, W. J., Tok, E. S., Xu, H., Wee, A. T. S., Appl. Phys. Lett. 80, 3406 (2002).Google Scholar
15 Bennett, P. A., Parikh, S. A., Lee, M. Y. and Cahill, David G., Surf. Sci. 312, 377 (1994).Google Scholar
16 Bennett, P. A., Cahill, David G., Coepl, M., Phys. Rev. Lett. 73, 452 (1994).Google Scholar
17 Maxwell, A. J., Brühwiler, P. A., Arvanitis, D., Hasselström, J., Johansson, M. K.-J. and Mårtensson, N., Phys. Rev. B57, 7312 (1998).Google Scholar
18 Seta, M. De, Tomozeiu, N., Sanvitto, D. and Evangelisti, F., Surf. Sci. 460, 203 (2000).Google Scholar
19 Balloch, M., Hamza, A. V., J. Vac. Sci. Technol. B12, 3218 (1994).Google Scholar
20 Magnano, E., Vandré, S., Cepek, C., Goldoni, A., Laine, A. D., Curró, G. M., Santaniello, A. and Sancrotti, M., Surf. Sci. 377–379, 1066 (1997).Google Scholar
21 Sakamoto, Kazuyuki, Kondo, Daiyu, Ushimi, Yoshimitsu, Harada, Masashi, Kimura, Akio, Kakizaki, Akito and Suto, Shozo, Phys. Rev. B60, 2579 (1999).Google Scholar