Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T15:31:09.589Z Has data issue: false hasContentIssue false

Intense RT Visible Photoluminescence from Anodized Amorphous and Nanocrystalline Silicon Films

Published online by Cambridge University Press:  28 February 2011

E. Bustarret
Affiliation:
LEPES-CNRS, BP166, F-38042 Grenoble Cedex 9, France
J. C. Bruyere
Affiliation:
LEPES-CNRS, BP166, F-38042 Grenoble Cedex 9, France
F. Muller
Affiliation:
LSP-UJF, BP 807, F-38402 St Martin d'Hères Cedex, France.
M. Ligeon
Affiliation:
LSP-UJF, BP 807, F-38402 St Martin d'Hères Cedex, France.
Get access

Abstract

Heavily Boron-doped micrometer-thick amorphous (a-Si:B:H) or nanocrystalline (nc-Si) silicon layers have been deposited on a variety of conductive substrates by the 50 KHz PECVD of SiH4 / B2H6 / H2 mixtures at 320°C. These films have been partially electro-oxidized in a HF solution and then anodically oxidized in water in a manner similar to that yielding luminescent porous monocrystalline silicon layers (PcSL). Although the anodized films are x-ray amorphous, they yield intense luminescence properties at room temperature very similar to those of anodically oxidized PcSL with a similar vibrational spectrum. In both anodically oxidized materials, aging is shown to improve the external quantum efficiency. In amorphous anodized layers, optical microscopy under UV excitation showed strongly luminescent strain-related heterogeneities (20 μ,m in diameter) connected by non luminescent channels. The incidence of our results on the current debate about the origin of visible room-temperature luminescence in porous silicon and Si:O:H systems is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 - Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990)Google Scholar
2 - Lehmann, V., Gosele, U., Appl. Phys. Lett. 58, 856 (1991)Google Scholar
3 - Vial, J.C., Bsiesy, A., Gaspard, F., Hérino, R., Ligeon, M., Muller, F., Romestain, R., Macfarlane, R.M., Phys. Rev. B45, 14171 (1992)Google Scholar
4 - Nakajima, A., ltakura, T., Watanabe, S., Nakayama, N., Appl. Phys. Lett. 61, 46 (1992)Google Scholar
5 - Shih, S., Tsai, C., Li, K.H., Jung, K.H., Campbell, J.C., Kwong, D.L., Appl. Phys. Lett. 60, 633 (1992)Google Scholar
6 - Fathauer, R.W., George, T., Ksendzov, A., Lin, T.L., Pike, W.T., Vasquez, R.P., Wu, Z.C., Mater. Res. Soc. Symp. Proc. 256, 165 (1992)Google Scholar
7 - Hummel, R.E., Chang, Sung-Sik, Appl. Phys. Lett. 61, 1965 (1992)Google Scholar
8 - Bustarret, E., Ligeon, M., Ortega, L, Solid St. Comm. 83, 461 (1992)Google Scholar
9 - Bustarret, E., Ligeon, M., Bruyère, J.C., Muller, F., Hérino, R., Gaspard, F., Ortéga, L., Stutzmann, M., Appl. Phys. Lett. 61, 1552 (1992)Google Scholar
10 - Wolford, D.J., Reimer, J.A., Scott, B.A., Appl. Phys. Lett. 42, 369 (1983)Google Scholar
11 - Knights, J.C., Street, R.A., Lucovsky, G., J. Non Cryst. Solids 35&36, 279 (1980)Google Scholar
12 - Carius, R., Fischer, R., Holzenkämpfer, E., Stuke, J., J. Appl. Phys. 52, 4241 (1981)Google Scholar
13 - Stutzmann, M.. Weber, J., Brandt, M.S., Fuchs, H.D., Rosenbauer, M., Deak, P., Hopner, A., Breitschwerdt, A., Adv. Solid State Phys. 32, 179 (1992)Google Scholar
14 - Tsai, C., Li, K.H., Sarathy, J., Shih, S., Campbell, J.C., Hance, B.K., White, J.M., Appl. Phys. Lett. 59, 2814 (1991)Google Scholar
15 - Prokes, S.M., Glembocki, O.J., Bermudez, V.M., Kaplan, R., Friedersdorf, L.E., Searson, P.C., Mater. Res. Soc. Symp. Proc. 256, 107 (1992)Google Scholar
16 - Prokes, S.M., Carlos, W.E., Bermudez, V.M., Appl. Phys. Lett, 61, 1447 (1992)Google Scholar
17 - George, T., Anderson, M. S., Pike, W.T., Lin, T.L., Fathauer, R.W., Jung, K.H. and Kwong, D.L., Appl. Phys. Lett. 60, 2359 (1992)Google Scholar
18 - Perez, J.M., Villalobos, J., McNeill, P., Prasad, J., Cheek, R., Kelber, J., Estrera, J.P., Stevens, P.D., Glosser, R., Appl. Phys. Lett. 61, 563 (1992)Google Scholar
19 - Friedershof, L.E., Searson, P.C., Prokes, S.M., Glembocki, O.J., Macaulay, J.M., Appl. Phys. Lett. 60, 2285 (1992)Google Scholar
20 - Halimaoui, A., Oulès, C., Bomchil, G., Bsiesy, A., Gaspard, F., Hérino, R., Ligeon, M., Muller, F., Appl. Phys. Lett. 59, 304 (1992)Google Scholar
21 - Hasegawa, H., Arimoto, S., Nanjo, J., Yamamoto, H., Ohno, H., J. Electrochem. Soc. 135, 424 (1988)Google Scholar
22 - Canham, L.T., Houlton, M.R., Leong, W.Y., Pickering, C., Keen, J.M., J. Appl. Phys. 70, 422 (1991)Google Scholar
23 - Tischler, M.A., Collins, R.T., Stathis, J.H., Tsang, J.C., Appl. Phys. Lett. 60, 639 (1992)Google Scholar
24 - Campbell, I.H., Fauchet, P.M., Lyon, S.A., Nemanich, R.J., Phys. Rev. B 41, 9871 (1990)Google Scholar
25 - Audet, Y., Grieshaber, W., Bruyere, J.C., Bustarret, E., Le Berrre, M., Barbier, D., Lemiti, M., Dubois, C., IPAT91 Int. Conf. Proc, CEP Ed.(Edinburgh UK), 190 (1991)Google Scholar
26 - Nakamura, M., Mochizuki, Y., Usami, K., Itoh, Y., Nozaki, T., Sol. St. Comm. 50, 1079 (1984)Google Scholar