Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T07:49:44.971Z Has data issue: false hasContentIssue false

Integrated MSM-FET Photoreceiver Fabricated on Mocvd Grown Hg1-xCdxTe

Published online by Cambridge University Press:  25 February 2011

Patrick W. Leech
Affiliation:
Telecom Australia Research Laboratories, 770 Blackburn Road, Clayton 3168, Victoria, Australia
Peter J. Gwynn
Affiliation:
Telecom Australia Research Laboratories, 770 Blackburn Road, Clayton 3168, Victoria, Australia
Geoffrey N. Pain
Affiliation:
Telecom Australia Research Laboratories, 770 Blackburn Road, Clayton 3168, Victoria, Australia
Novica R. Petkovic
Affiliation:
Telecom Australia Research Laboratories, 770 Blackburn Road, Clayton 3168, Victoria, Australia
James Thompson
Affiliation:
Telecom Australia Research Laboratories, 770 Blackburn Road, Clayton 3168, Victoria, Australia
David N. Jamieson
Affiliation:
School of Physics, University of Melbourne, Parkville, 3052, Victoria, Australia
Get access

Abstract

We report on progress in the monolithic integration of a metal-semiconductor-metal (MSM) detector and transimpedence amplifier and of a photoconductive detector (PCD) with a metal-semiconductor field effect transistor (MESFET) in Hg1-xCdxTe. The layers of CdTe/n-type Hg1-xCdxTe were grown by MOCVD on semi-insulating GaAs substrates (2° misoriented 100). Fabrication of the devices was by an FET planar process; with a standard lift-off used to form Schottky metallization on both the interdigitated electrodes of the MSM detector (2μm width, 2μm spacing) and the gate of the MESFETs (5μm length, 100μm width). The MSM photodetectors exhibited breakdown voltages in the range 60 to 80V, a dark current of 1 Ona at 5V bias, and responsivities of > 1.0 A/W measured at 40V using CW 1.3um illumination. The integrated devices have been characterised by electrical and micro RBS techniques; the results were found to be strongly dependent on the stoichiometric x ratio of the Hg1-xCdxTe. This initial work demonstrates the suitability of Hg1-xCdxTe/GaAs structures in the fabrication of integrated optoelectronic circuits.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Barnard, J., Ohno, H., Wood, C.E. and Eastman, L.F., IEEE Electron Device Lett., EDL–2, (1981),7.Google Scholar
2. Matsuo, H., Ohno, H. and Hasegawa, H., Jpn.J.Appl.Phys., 23, (1984), 648.CrossRefGoogle Scholar
3. Filippozzi, J.L., Therez, F., Esteve, D., Fallahi, M., Kendil, D., Silva, M. Da, Barbe, M. and Cohen-Solal, G., J.Crystal Growth, 101, (1990), 1013.CrossRefGoogle Scholar
4. Pohjonen, H. and Anderson, M., Sensors and Actuators, A21–23, (1990), 1124.Google Scholar
5. Yang, L., Sudbo, A.S., Tsang, W.T., Garbinski, P.A. and Carmada, R.M., IEEE Photonics Technology Letters, 2, (1), (1990), 59.Google Scholar
6. Orsal, B., Alabedra, R., Valenza, M., Lecoy, G., Meslage, J. and Boisrobert, C.Y., IEEE Trans. Electron Devices, ED–35, (1988), 101.CrossRefGoogle Scholar
7. Thompson, J., Mackett, P., Jenkin, G.T., Nguyen, T. Duy and Gori, P., J.Crystal Growth, 86, (1988), 917.Google Scholar
8. Leech, P.W., Gwynn, P.J., Pain, G.N., Petkovic, N. and Thompson, J., Electronics Letters, 26, (4), (1990), 221.CrossRefGoogle Scholar
9. Leech, P.W., Petkovic, N., Gwynn, P.J., Pain, G.N. and Thompson, J., Electronics Letters, 26, (22), (1990), 1848.Google Scholar
10. Pain, G.N., Bharatula, N., Elms, T.J., Gwynn, P., Kibel, M., Kwietniak, M.S., Leech, P.W., Petkovic, N., Sandford, C., Thompson, J., Warminski, T., Gao, D., Glanvill, S.R., Rossouw, C.J., Stevenson, A.K., Wilkins, S.W. and Wielunski, L., J.Vac.Sci.Technol., A8(2), (1990), 1067.CrossRefGoogle Scholar
11. Leech, P.W., Gwynn, P.J. and Kibel, M., App.Surface Science, 37, (1989), 291.Google Scholar
12. Soole, J.B.D., Schumacher, H., Leblanc, H.P., Bhat, R. and Koza, M.A., IEEE Photonics Technology Letters, 1, (8), (1989), 250.Google Scholar
13. Legge, G.J.F., McKenzie, C.D., Mazzolini, A.P., Sealock, R.M., Jamieson, D.N., O'Brien, P.M., McCallum, J.C., Allan, G.L., Brown, R.A., Coleman, R.A., Kirby, B.J., Lucas, M.A., Zhu, J. and Cerini, J., N.I.M., B15, (1986), 669.Google Scholar
14. Chu, W.K., Mayer, J.W. and Nicolet, M-A., “Backscattering Spectrometry”, Academic Press, (1978).Google Scholar
15. Johansson, S.A.E. and Johansson, T.B., N.I.M., 137, (1976), 473.Google Scholar
16. Spicer, W.E., Friedman, D.J. and Carey, G.P., J.Vac.Sci.Technol., A6, (1988), 2746.Google Scholar