Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T07:33:00.256Z Has data issue: false hasContentIssue false

In-Situ x-Ray Diffraction Analysis of TiSi2 Phase Formation from a Titanium-Molybdenum Bilayer

Published online by Cambridge University Press:  10 February 2011

C. Cabral
Affiliation:
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY 10598
L. A. Clevenger Jr
Affiliation:
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY 10598
J. M. E. Harper
Affiliation:
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY 10598
R. A. Roy
Affiliation:
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY 10598
K. L. Saenger
Affiliation:
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY 10598
G. L. Miles
Affiliation:
IBM Microelectronics Division, Essex Junction, V-f 05452
R. W. Mann
Affiliation:
IBM Microelectronics Division, Essex Junction, V-f 05452
Get access

Abstract

We demonstrate that the addition of a molybdenum interlayer between titanium and silicon enhances the formation of C54 TiSi2, without bypassing the formation of the C49 TiSi2 phase. In situ x-ray diffraction analysis during rapid thermal annealing, at a rate of 3 °C/s, was used to study the phase formation sequence of TiSi2 starting from a blanket bilayer of Ti on Mo on a polycrystalline Si substrate. It was shown, as in the case without the Mo layer, that the C49 TiSi2 phase forms first, followed by the C54 TiSi2 phase. The results were similar for undoped or arsenic, boron, and phosphorous doped polycrystalline silicon substrates. The temperature range over which the C49 phase is stable is reduced, on average, by 80 °C. The lower end of the range (appearance of C49) is increased by approximately 60 °C and the upper end of the range (disappearance of C49) is decreased by about 20 0C. The orientation of the C49 phase differs in that both the C49(131) and C49(060) orientations are observed, compared to the case without the Mo layer where only the C49(131) orientation is observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. d'Heurle, F.M., Gas, P., Engstrom, I., Nygren, S., Ostling, M. and Petersson, C.S., IBM RC Report 11151, Yorktown Heights, NY (1985).Google Scholar
2. Beyers, R. and Sinclair, R., J. Appl. Phys. 57, 5240 (1985).Google Scholar
3. Lasky, J., Nakos, J., Cain, O. and Geiss, P., IEEE Trans. Electron Devices ED–38, 2629 (1991).Google Scholar
4. Nygren, S. and d'Heurle, F.M., Solid State Phenomena, 23&24, 81 (1992).Google Scholar
5. Colgan, E.G., Gambino, J.P. and Hong, Q.Z., Materials Science and Engineering, R16, 43 (1996).Google Scholar
6. Ohguro, T., Nakamura, S., Koike, M., Morimoto, T., Nishiyama, A., Ushiku, Y., Yoshitomi, T., Ono, M., Saito, M. and Iwai, H., IEEE Trans. Electron Devices ED–41, 2305 (1994).Google Scholar
7. Li, X-H., Carlsson, R.A., Gong, S.F. and Hentzell, H.T.G., J. Appl. Phys. 72, 514 (1992).Google Scholar
8. Kuwano, H., Phillips, J.R. and Mayer, J.W., Appl. Phys. Lett. 56, 440 (1990).Google Scholar
9. Tung, R.T., in Silicide Thin Films-Fabrication, Properties and Applications, edited by R.T., Tung, K., Maex, P.W., Pellegrini and L.H., Allen (Mater. Res. Soc. Symp. Proc. 402, Pittsburgh, PA, 1996), p. 101.Google Scholar
10. Clevenger, L.A., Mann, R.W., Miles, G.L., Harper, J.M.E., d'Heurle, F. M., Cabral, C. Jr., Saenger, K.L., Knotts, T.A. and Rakowski, D.W., Proc. VLSI Multilevel Interconnection Conf., 626 (1995).Google Scholar
11. Mann, R.W., Miles, G.L., Knotts, T.A., Rakowski, D.W., Clevenger, L.A., Harper, J.M.E., d'Heurle, F.M., and Cabral, C., Jr., Appl. Phys. Lett. 67, 3729 (1995).Google Scholar
12. Mouroux, A., Zhang, S.L., Kaplan, W., Nygren, S., Ostling, M. and Petersson, C.S., Appl. Phys. Lett. 69(7), 975 (1996).Google Scholar
13. Cabral, C. Jr., Clevenger, L.A., Harper, J.M.E., d'Heurle, F.M., Roy, R.A. and Saenger, K.L., J. Mater. Res. 12(2) (1997) (in press).Google Scholar
14. Stephenson, G.B., Nuclear Instruments and Methods in Physics Research A266, 477 (1988).Google Scholar
15. Stephenson, G.B., Ludwig, K.F. Jr., Jordan-Sweet, J.L., Brauer, S., Mainville, J., Yang, Y.S. and Sutton, M., Rev. Sci. Instrum. 60, 1537 (1989).Google Scholar
16. Raaijmakers, Ivo J.M.M. and Kim, K.B., J. Appl. Phys. 67, 6255 (1990).Google Scholar
17. Ma, Z., Allen, L.A., and AlIman, D.D.J., J. Appl. Phys. 77, 4384 (1995).Google Scholar
18. d'Heurle, F.M., VLSI Science and Technology, edited by C., Dell'Oca and W.M., Bullis (Electrochemical Society, Pennington, NJ, 1982), p. 194.Google Scholar