Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T02:39:44.630Z Has data issue: false hasContentIssue false

In-Situ Scanning Electron Microscope Observations of Strain-Confined Lithium Nucleation at Electrode/Electrolyte Interfaces in All-Solid-State-Lithium Battery

Published online by Cambridge University Press:  10 June 2015

Munekazu Motoyama
Affiliation:
Department of Materials, Physics and Energy Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan JST-ALCA, 5 Sanban-cho, Chiyoda-ku, Tokyo 102-0075, Japan
Makoto Ejiri
Affiliation:
Department of Materials, Physics and Energy Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan JST-ALCA, 5 Sanban-cho, Chiyoda-ku, Tokyo 102-0075, Japan
Yasutoshi Iriyama
Affiliation:
Department of Materials, Physics and Energy Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan JST-ALCA, 5 Sanban-cho, Chiyoda-ku, Tokyo 102-0075, Japan
Get access

Abstract

We have studied electrochemical Li deposition/dissolution processes at amorphous solid electrolyte (LiPON) interfaces with 30-nm-thick-Cu-current collectors at different current densities by in-situ scanning electron microscopy (SEM). When the current density is smaller than 300 μA cm−2, Li islands continue to grow under a Cu film without coalescing with their neighbors. Consequently, they produce small cracks in the Cu film leading to isolated Li rod growth from the cracks. On the other hand, a current density of 1.0 mA cm−2 provokes the nucleation of Li islands with a higher number density. They rapidly coalesce under a Cu film in all lateral directions before cracking the Cu film. High current density conditions therefore suppress Li rod growths.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Murugan, R., Thangadurai, V., and Weppner, W., Angew. Chem., Int. Ed., 46, 7778 (2007).CrossRefGoogle Scholar
Kamaya, N., Homma, K., Yamakawa, Y., Hirayama, M., Kanno, R., Yonemura, M., Kamiyama, T., Kato, Y., Hama, S., Kawamoto, K., and Matsui, A., Nat. Mater., 10, 682 (2011).CrossRefGoogle Scholar
Sakuda, A., Hayashi, A., and Tasumisago, M., Sci. Rep., 3, 2261 (2013).CrossRefGoogle Scholar
Corish, J. and O’Brian, C. D., J. Mater. Sci., 6, 252 (1971).Google Scholar
Lee, M., O’Hayre, R., Prinz, F. B., and Gür, T. M., Appl. Phys. Lett., 85, 3552 (2004).CrossRefGoogle Scholar
Rohnke, M., Rosenkranz, C., and Janek, J., Solid State Ionics, 177, 447 (2006).CrossRefGoogle Scholar
Hasegawa, T., Terabe, K., Tsuruoka, T., and Aono, M., Adv. Mater., 24, 252 (2012).CrossRefGoogle Scholar
Okita, K., Ikeda, K., Sano, H., Iriyama, Y., and Sakaebe, H., J. Power Sources, 196, 2135 (2011).CrossRefGoogle Scholar
Sagane, F., Shimokawa, R., Sano, H., Sakaebe, H., and Iriyama, Y., J. Power Sources, 225, 245 (2013).CrossRefGoogle Scholar
Sagane, F., Ikeda, K., Okita, K., Sano, H., Sakaebe, H., and Iriyama, Y., J. Power Sources, 233, 34 (2013).CrossRefGoogle Scholar
Nagpure, S. C., Downing, R. G., Bhushan, B., and Babu, S. S., Scripta Mater., 67, 669 (2012).CrossRefGoogle Scholar
Hasegawa, S., Imanishi, N., Zhang, T., Xie, J., Hirano, A., Takeda, Y., and Yamamoto, O., J. Power Sources, 189, 371 (2009).CrossRefGoogle Scholar
Yu, X., Bates, J. B., Jellison, J. E. Jr., and Hart, F. X., J. Electrochem. Soc., 144, 524 (1997).CrossRefGoogle Scholar
Motoyama, M., Ejiri, M., and Iriyama, Y., to be submitted .Google Scholar
Avrami, M., J. Chem. Phys., 7, 1103 (1939); Avrami, M., J. Chem. Phys., 8, 212 (1940); Avrami, M., J. Chem. Phys., 9, 177 (1941).CrossRefGoogle Scholar
Oskam, G., Long, J. G., Natarajan, A., and Searson, P. C., J. Phys. D: Appl. Phys., 31, 1927 (1998).CrossRefGoogle Scholar