Article contents
In-Situ Neutron Diffraction Study of Strain-Induced Martensite Formation in 304L Stainless Steel at a Cryogenic Temperature
Published online by Cambridge University Press: 01 February 2011
Abstract
In-situ, time-of-flight neutron diffraction was performed to investigate the martensitic phase transformation during quasi-static uniaxial compression testing of 304L stainless steel at 300K (room temperature) and 203K. In-situ neutron diffraction study enabled the bulk measurement of intensity evolution for each hkl atomic plane during the austenite (fcc) to martensite (hcp and bcc) phase transformation. The neutron diffraction patterns show that the martensite phases started to develop at about 2.5% applied strain (600 MPa applied stress) at 203K. However, at 300K, the martensite formation was not observed throughout the test. Furthermore, from changes in the relative intensities of individual hkl atomic planes, the selective phase transformation can be well understood and the grain orientation relationship between the austenite and newly-forming martensite phases can be determined. The results show that the fcc grain families with {111} and {200} plane normals parallel to the loading axis are favored for the “fcc to hcp” and “fcc to bcc” transformations, respectively.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2005
References
REFERENCES
- 1
- Cited by