No CrossRef data available.
Article contents
In‐Situ Measurements of Thermal Properties of Dielectric Films on Metal‐Dielectric‐Substrate Structures
Published online by Cambridge University Press: 10 February 2011
Abstract
We show that the thermal diffusivity of a dielectric film and the heat‐transfer coefficient between the film and the substrate to which it is adhesively bonded can be determined from the electret‐like response stimulated by laser pulses applied to the voltage‐biased dielectric. The temperature profile is calculated as a function of time from the heat‐conduction equation with boundary conditions appropriate for the model structure representing the metallic electrode/ dielectric film/ glue layer/ substrate structure. The electrode, acting as a thermal mass, and the substrate, acting as a thermal sink, affect the temperature profile in different time ranges.
The response is a convolution of the temperature and the electric‐field profiles across the dielectric. For nonideal dielectrics that acquire bulk charge under bias, deconvolution is necesssary to determine the field profile and the thermal properties. Deconvolution is accomplished using the Tikhonov‐regularization technique with a self‐consistent regularization parameter. This procedure yields information about the thermal properties of both the dielectric and the glue joint, as shown by actual measurements.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1997