Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T08:04:38.303Z Has data issue: false hasContentIssue false

In-situ GISAXS on Nanocomposite Films of CdS Nanoparticles and Polymers

Published online by Cambridge University Press:  01 February 2011

Tiziana Di Luccio
Affiliation:
[email protected], ENEA, FIM-MATNANO, Via Vecchio Macello, Portici, 80055, Italy, +390817723244, +390817723344
Dina Carbone
Affiliation:
[email protected], European Synchrotron Radiation Facility (ESRF), 6 rue Jules Horowitz, Grenoble, 38000, France
Anna Maria Laera
Affiliation:
[email protected], Italian National Agency for New Technologies, Energy and the Environment (ENEA), FIM-MATCOMP, Strada Statale 7 Appia, Brindisi, 72100, Italy
Katrin Peeper
Affiliation:
[email protected], Photonics and Optoelectronis Group, Dep. of Physics and CeNS Ludwig-Maximilians-Universitaet, Amalienstr. 54, Munich, 80799, Germany
Christian Mauser
Affiliation:
[email protected], Photonics and Optoelectronis Group, Dep. of Physics and CeNS Ludwig-Maximilians-Universitaet, Amalienstr. 54, Munich, 80799, Germany
Enrico Da Como
Affiliation:
[email protected], Photonics and Optoelectronis Group, Dep. of Physics and CeNS Ludwig-Maximilians-Universitaet, Amalienstr. 54, Munich, 80799, Germany
Get access

Abstract

We investigated the growth of CdS nanoparticles in polymer films by means of ex-situ and in-situ x-ray scattering experiments using synchrotron radiation. The CdS nanoparticles were synthesized by thermal decomposition of a Cd thiolate precursor dispersed in a cyclic olefin copolymer. The films were deposited by spin coating. Grazing incidence diffraction (GID) reveals the Bragg reflections of the CdS nanoparticles. In-situ diffraction and grazing incidence small angle scattering (GISAXS) experiments were recorded during the thermal treatment of the precursor/polymer films from room temperature up to 250°C. The diffraction curves show that the initial precursor structure is soon lost at 100°C. Correspondingly, the GISAXS data show a peak at a momentum transfer value q ∼ 0.2Å−1 that shifts towards smaller values with the temperature. Under UV excitation the films show photoluminescence in the range 400 – 700 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Shipway, A. N., Katz, E., and Willner, I., Chemphyschem 1, 18 (2000), Wiley-VCH-Verlag, Weinheim.Google Scholar
2. Rossetti, R., Ellison, J. L., Gibson, J. M., and Brus, L. E., J. Chem. Phys. 80, 4464 (1984); A. L. Rogach, T. Franzl, T. A. Klar, J. Feldmann, N. Gaponik, V. Lasnyak, A. Shavel, A. Eychmüller, Y. P. Rakovic, and J. F. Donegan, J. Phys. Chem. C 111, 14628 (2007) and references therein.Google Scholar
3. Coe, S., Woo, W., Bawendi, M. and Bulović, V., Nature 420, 800 (2003); S. Coe-Sullivan, J. S. Steckel, W. Woo, M. G. Bawendi, and V. Bulović, Adv. Funct. Mater. 15, 1117 (2005).10.1038/nature01217Google Scholar
4. Chen, X., Jiang, Y., Wu, Z., Li, D., J, Yang, Sensors and Actuators B 66, 37 (2000); R. A. Potyrailo and A. M. Leach, Appl. Phys. Lett. 88, 134110 (2006).10.1016/S0925-4005(99)00448-7Google Scholar
5. Varfolomeev, A. E., Volkov, A. V., Zaretskii, D. F., Moskvina, M. A. and Mordkovich, V. Z., Technical Physics Letters 30, 663 (2004).10.1134/1.1792306Google Scholar
6. Pietsch, U., Metzger, T. H. and Peisl, J., Phys. Rev. Lett. 73, 2228 (1994); K. PaschkeT. H. Metzger, I. Kegel, R. Paniago and J. Peisl, J. Phys. D: Appl. Phys. 32, A202 (1999).Google Scholar
7. Carotenuto, G., Martorana, B., Perlo, P., Nicolais, L., J. Mater. Chem. 13, 2927 (2003); F. Antolini, M.Pentimalli, T. Di Luccio, R. Terzi, M. Schioppa, M. Re, M. Marenghi, L. Tapfer, Mater. Lett. 59, 3181 (2005); M. Pentimalli, F. Antolini, E. M. Bauer, D. Capitani, T. Di Luccio, S. Viel, Mater. Lett. 60, 2657 (2006).Google Scholar
8. Luccio, T. Di, Nickel, B., Antolini, F., Pentimalli, M., Tapfer, L., Mater. Res. Soc. Symp. Proc. 847, EE13.22.1 (2005).Google Scholar
9. Luccio, T. Di, Laera, A. M., Tapfer, L., Kempter, S., Kraus, R., Nickel, B., J. Phys. Chem. B 110, 12603 (2006).10.1021/jp061003mGoogle Scholar
10. Luccio, T. Di, Piscopiello, E., Laera, A. M., Antisari, M. Vittori, Mat. Sci. Eng. C 27, 1372 (2007).Google Scholar
11. Parratt, L. G., Phys. Rev. 95, 359 (1954).10.1103/PhysRev.95.359Google Scholar
12. Hochrein, M. B., Reich, C., Krause, B., Rädler, J. O. and Nickel, B., Langmuir 22, 538 (2006).10.1021/la051820yGoogle Scholar
13. Henke, B. L., Gullikson, E. M. and Davis, J. C., Atomic and Nuclear Data Tables 54, 181 (1993).10.1006/adnd.1993.1013Google Scholar
14. Spanhel, L., Haase, M., Weller, H., and Henglein, A., J. Am. Chem. Soc. 109, 5649 (1987); J. W. M. Chon, M. Gu, C. Bullen, P. Mulvaney, Appl. Phys. Lett. 84, 4472 (2004); S. Santhi, E. Bernstein, F. Paille, J. Lumin. 117, 101 (2006).Google Scholar
15. Petit, C., Lixon, P., and Pileni, M. P., J. Phys. Chem. 94, 1598 (1990); H. Weller, Angew. Chem. Int. Ed Engl. 32, 41(1993); N. Pinna, K. Weiss, J. Urban, and M. P. Pileni, Adv. Mat. 13, 261 (2001).10.1021/j100367a069Google Scholar
16. Lazzari, R.IsGISAXS: a program for Grazing-Incidence Small Angle X-Ray Scattering analysis of supported islands”, Appl. Cryst. 35, 406 (2002).10.1107/S0021889802006088Google Scholar
17. Guinier, A. and Fournet, G., Small-Angle scattering of X-rays (John Wiley & Sons, New York, 1955).Google Scholar