Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T02:27:34.379Z Has data issue: false hasContentIssue false

In-situ Characterization of As-grown Surface of CIGS Films

Published online by Cambridge University Press:  01 February 2011

Hirotake Kashiwabara
Affiliation:
[email protected], Kagoshima University, Nano-structure and Advanced Materials, 1-21-40 Korimoto, Kagoshima, 890-0065, Japan
Shimpei Teshima
Affiliation:
[email protected], Kagoshima University, Nano-structure and Advanced Materials, 1-21-40 Korimoto, Kagoshima, 890-0065, Japan
Kazuya Kikunaga
Affiliation:
[email protected], Kagoshima University, Nano-structure and Advanced Materials, 1-21-40 Korimoto, Kagoshima, 890-0065, Japan
Kazunori Takeshita
Affiliation:
[email protected], Kagoshima University, Nano-structure and Advanced Materials, 1-21-40 Korimoto, Kagoshima, 890-0065, Japan
Tetsuji Okuda
Affiliation:
[email protected], Kagoshima University, Nano-structure and Advanced Materials, 1-21-40 Korimoto, Kagoshima, 890-0065, Japan
Kozo Obara
Affiliation:
[email protected], Kagoshima University, Nano-structure and Advanced Materials, 1-21-40 Korimoto, Kagoshima, 890-0065, Japan
Keiichiro Sakurai
Affiliation:
[email protected], Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, 305-8568, Japan
Shogo Ishizuka
Affiliation:
[email protected], Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, 305-8568, Japan
Akimasa Yamada
Affiliation:
[email protected], Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, 305-8568, Japan
Koji Matsubara
Affiliation:
[email protected], Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, 305-8568, Japan
Shigeru Niki
Affiliation:
[email protected], Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, 305-8568, Japan
Norio Terada
Affiliation:
[email protected], Kagoshima University, Nano-structure and Advanced Materials, 1-21-40 Korimoto, Kagoshima, 890-0065, Japan
Get access

Abstract

In-situ characterization of composition, electronic structure and their depth profiles of surface of Cu(In1-xGax)Se2 (CIGS) film grown by three stage co-evaporation has been carried out by means of photoemission and inverse photoemission spectroscopy (PES/IPES), for the purpose of investigating the formation mechanism of the CIGS-side wide band-gap region adjacent to CBD-CdS/CIGS interface in cell structure. Sample-transportation in vacuum below 1 x 10-8 Torr yielded almost contamination-free feature of the CIGS surface. The as-transferred surface of Cu0.93(In0.65Ga0.35)Se2 grown at the identical condition for the high performance solar cell exhibited seriously Cu and Ga deficient composition. Chemical formula of this region was inbetween Cu : (In+Ga): Se = 1 : 3 : 5 and 1 : 5 : 8. In-situ UPS/IPES measurements CIGS showed that the as-grown surface region of the CIGS already had expanded band gap energy up to 1.4 eV and n-type character. A gradual decrease of band energy and a rise of valence band maximum as a function of depth from the original surface were observed. These results have revealed that the surface of CIGS by the three stage method already has the wide band gap, which might originate in so-called Cu-vacancy ordered phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Contreras, M. A., Egaas, B., Ramanthan, B. K., Hiltner, J., Swartzlander, A., Hasson, H. and Noufi, R., Prog. Photovolt 7, 311 (1991).Google Scholar
2. Negami, T., Hashimoto, Y. and Nishiwaki, S., Sol. Energy Mater Sol. Cells 67, 331 (2001).Google Scholar
3. Voorwinden, G., Kiese, R., and Powalla, M., Thin Solid Films 431-432, 538542 (2003).Google Scholar
4. Contreras, M. A., Tuttle, J., Gabor, A., Tennant, A., Ramanathan, K., Asher, S., Franz, A., Keane, J., Wang, L., and Noufi, R., Sol. Energy Mater. Sol. Cells 41/42, 231246 (1996).Google Scholar
5. Minemoto, T., Hashimoto, Y., Kolahi, W. S., Satoh, T., Negami, T., Takakura, H. and Hamakawa, Y., Sol. Energy Mater. Sol. Cells, 49, 121126 (2003).Google Scholar
6. Siebentritt, S., Thin Solid Films 403-404, 18 (2002).Google Scholar
7. Minemoto, T., Hashimoto, Y., Satoh, T., Negami, T., Takakura, H. and Hamakawa, Y., J. Appl. Phys. 89, 8327-8330 (2001)Google Scholar
8. Schmid, D., Ruckh, M. and Schock, H. W., Sol. Energy Mater. Sol. Cells 41/42, 281294 (1996).Google Scholar
9. Rau, U. and Schock, H. W., Appl. Phys. A 69, 131147 (1999).Google Scholar
10. Schulmeyer, T., Hunger, R., Klein, A., Jaegermann, W. and Niki, S., Appl. Phys. Lett. 84, 30673069 (2004).Google Scholar
11. Kronik, L., Burstein, L., Leibovitch, M., Shapira, Y., Gal, D., Moons, E., Beier, J., Hodes, G., Cahen, D., Hariskos, D., Klenk, R. and Schock, H. W., Appl. Phys. Lett. 67, 14051407 (1995).Google Scholar
12. Morkel, M., Weinhardt, L., Lohmuller, R., Heske, C., Umbach, E., Riedl, W., Zweigart, S. and Karg, F., Appl. Phys. Lett. 79, 44824484 (2001).Google Scholar
13. Terada, N., Widodo, R. T., Itoh, K., Kong, S. H., Kashiwabara, H., Okuda, T., Obara, K., Niki, S., Sakurai, K., Yamada, A. and Ishizuka, S., Thin Solid Films 480-481, 183187 (2005).Google Scholar
14. Okano, Y., T. Nakada and Kunioka, A., Sol. Energy Mater. Sol. Cells 50, 105110 (1998).Google Scholar
15. Černivec, G., Krč, J., Smole, F. and Topič, M., Thin Solid Films 511-512, 6065 (2006).Google Scholar
16. Nakada, T. and Kunioka, A., Appl. Phys. Lett. 74, 24442446 (1999).Google Scholar
17. Sakurai, K., Hunger, R., Scheer, R., Kaufmann, C. A., Yamada, A., Baba, T., Kimura, Y., Matsubara, K., Fons, P., Nakanishi, H. and Niki, S., Prog. Photovoltaics. Res. Appl. 12, 219234 (2004).Google Scholar