Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T02:25:33.760Z Has data issue: false hasContentIssue false

Insight into the Deformation Mechanisms under a Sharp Contact Loading in Glass by Atomic Force Microscopy

Published online by Cambridge University Press:  26 February 2011

Tanguy Rouxel
Affiliation:
[email protected], Université de Rennes 1, LARMAUR, Bât. 10 B, Campus de Beaulieu, Rennes, 35, 35235, France, 33223236718
Satoshi Yoshida
Affiliation:
LARMAUR, FRE-CNRS 2717, Bât. 10 B, Campus de Beaulieu, Université de Rennes 1, 35042 Rennes Cedex, France.
Haixia Shang
Affiliation:
LARMAUR, FRE-CNRS 2717, Bât. 10 B, Campus de Beaulieu, Université de Rennes 1, 35042 Rennes Cedex, France.
Jean-Christophe Sangleboeuf
Affiliation:
LARMAUR, FRE-CNRS 2717, Bât. 10 B, Campus de Beaulieu, Université de Rennes 1, 35042 Rennes Cedex, France.
Get access

Abstract

The response of a material to a sharp contact loading, as in the case of Vickers indentation for instance, provides a unique insight into the material constitutive law, including elastic and irreversible deformation parameters as well. However, under such peculiar thermodynamical and mechanical conditions (the mean contact pressure on the contact area reaches values typically higher than 1 GPa, corresponding to the hardness of the material) the deformation processes are complex and the matter located just beneath and around the contact area may experience some structural changes and behave in a way different to the expected - or known - macroscopic behaviour. It is showed in this study by means of detailed topological investigations of the residual indentations by Atomic Force Microscopy (AFM) that the elastic recovery typically represents 50 to 70 % of the indentation volume at maximum load and that the densification contribution may reach 90 % of the residual deformation volume. Besides, most glasses exhibit indentation-creep phenomena, which become significant over time scale of few minutes because of a pronounced shear-thinning behavior..

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ernsberger, F.M., J. Am. Ceram. Soc., 51, 10, 545547 (1968).Google Scholar
2 Ma, H.L., Zhang, X.H., Lucas, J., J. Non-Cryst. Sol., 135, 1, 4954 (1991).Google Scholar
3 Inoue, A., Zhang, T. & Masumoto, T., Mat. Trans., JIM 36, 3, 391398 (1995).Google Scholar
4 Boussinesq, J., “Applications des potentiels à l'étude de l'équilibre et du mouvement des solides élastiques”, Gauthiers-Villars Pub. (1885).Google Scholar
5 Stilwell, N.A. and Tabor, D., Phys. Proc. Soc. LXXVIII (2), 169179 (1961).Google Scholar
6 Loubet, J-L., Georges, J.M. & Meille, G., in “Microindentation techniques in materials science and engineering”, Eds. Blau, and Lawn, , ASTM-STP 889, 7389 (1984).Google Scholar
7 Makishima, A. and Mackenzie, J.D., J. Non-Cryst. Sol., 17, 147157 (1975).Google Scholar
8 Peter, K.W., J. Non-Cryst. Sol., 5, 103115 (1970).Google Scholar
9 Neely, J.E. and Mackenzie, J.D., J. Mat. Sci., 3, 603609 (1968).Google Scholar
10 Mackenzie, J.D., J. Am. Ceram. Soc., 46, 10, 470476 (1963).Google Scholar
11 Yoshida, S., J.C. Sangleboeuf and Rouxel, T., J. Mat. Res., J. Mat. Res., 20, 34043412 (2005).Google Scholar
12 Baron, B., Chartier, T., Rouxel, T., Verdier, P. and Laurent, Y., J. Europ. Ceram. Soc., 17, 773780 (1998).Google Scholar
13 Sakai, M. and Shimizu, S., J. Non-Cryst. Solids, 282, 23, 236-247 (2001).Google Scholar
14 Shang, H. and Rouxel, T., J. Am. Ceram. Soc., 88, 9, 26252628 (2005). See also: Ibid, J. Mat. Res., 21, 632-638 (2006).Google Scholar
15 Guin, J-P., Rouxel, T., Keryvin, V., Sangleboeuf, J.C., Serre, I. and Lucas, J., J. Non-cryst. Sol., 298, 260269 (2002).Google Scholar