Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T02:38:55.014Z Has data issue: false hasContentIssue false

In-Plane Uniaxial Magnetic Anisotropy of Cobalt Doped Y3Fe5O12 Epitaxial Films

Published online by Cambridge University Press:  10 February 2011

Darren Dale
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
G. Hu
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
Vincent Balbarin
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
Y. Suzuki
Affiliation:
Get access

Abstract

In an effort to develop a magnetic biasing layer for potential applications in integrated devices, we have grown thin films of Y3Fe5O12 with increased uniaxial anisotropy by doping with varying Co2+, concentration. To compensate for the charge differential between Co2+ and Fe3+, Ge4+ and Ce4+ are substituted for Fe3+ and y3+, respectively. These garnet films, prepared using pulsed laser deposition on (110) oriented Gd3Ga5O12 substrates, exhibit excellent crystallinity as determined from X-ray diffraction and Rutherford backscattering spectroscopy. The addition of Co2+ in Y3Fe5O12 films enhances the in-plane uniaxial anisotropy over an order of magnitude, depending on composition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Arai, K.I., Yamaguchi, M., Ohzeki, H. and Matsumoto, M., IEEE Trans. Magn. 27 5337 (1991).10.1109/20.278831Google Scholar
2. Gyorgy, E.M., Phillips, J. M., Suzuki, Y. and Dover, R.B. van, US Patent #5665465.Google Scholar
3. Suzuki, Y., Dover, R. B. van, Gyorgy, E. M., Phillips, Julia M. and Felder, R.J., Phys. Rev. B53 14016 (1996).10.1103/PhysRevB.53.14016Google Scholar
4. Sturge, M.D., Gyorgy, E.M., LeCraw, R.C. and Remeika, J.P., Phys. Rev. 180 413 (1969).10.1103/PhysRev.180.413Google Scholar
5. Hansen, P., Tolksdorf, W. and Krishnan, R., Phys. Rev. B16 3973 (1977).10.1103/PhysRevB.16.3973Google Scholar
6. Wolf, W.P., Phys. Rev. 108 1152 (1957).10.1103/PhysRev.108.1152Google Scholar
7. Dhara, S., Rastogi, A.C. and Das, B.K., J. Appl. Phys. 79 953 (1996).10.1063/1.360877Google Scholar
8. Gomi, M., Kishimoto, K. and Abe, M., J. Magn. Soc. Jpn. 11 309 (1987).Google Scholar
9. Matthews, J.W., Blakeslee, A.E., Mader, S., Thin Solid Films, 33 253 (1976).10.1016/0040-6090(76)90085-7Google Scholar
10. Suzuki, Y., Hwang, H.Y., Cheong, S-W., Dover, R.B. van, Appl. Phys. Lett. 71 140 (1997).10.1063/1.119454Google Scholar
11. Fratello, V.J., Gyorgy, E.M. and Dover, R.B. van, unpublished.Google Scholar