Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T06:56:36.234Z Has data issue: false hasContentIssue false

Inorganic Nanocrystals with Dendrimer Templates: Mesoscopic Model System and Route to New Nanocomposites

Published online by Cambridge University Press:  21 March 2011

Franziska Gröhn
Affiliation:
Polymers Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.
Barry J. Bauer
Affiliation:
Polymers Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.
Eric J. Amis
Affiliation:
Polymers Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.
Get access

Abstract

We investigate nanostructures that are formed when dendrimers act as hosts. Poly(amidoamine) (PAMAM) dendrimers can be used as templates for inorganic nanocrystals, both in aqueous solution1-3 and in a polymeric matrix4. SANS, SAXS and TEM are used to characterize the resulting hybrid structures. Different inorganic colloids like noble metal and cadmium sulfide colloids are studied1,2. With increasing dendrimer generation, we observe a transition from low molecular colloid stabilizing to an effective polymer templating in terms of a “host-guest nanoscale synthesis”. For these higher generation dendrimers, inorganic colloids are formed inside single dendrimer molecules and the size of the nanocrystal can precisely be controlled by the dendrimer generation (“fixed loading law”). Hydrophobically modified dendrimers in organic solvent represent a further, different kind of host system that we have investigated using scattering methods5.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Gröhn, F.; Bauer, B.J.; Akpalu, Y.A.; Jackson, C.L.; Amis, E.J.; Macromolecules, 2000, 33, 6042.Google Scholar
[2] Gröhn, F.; Bauer, B.J.; Amis, E.J.; ACS Polymer Preprints 2000, 41, 560.Google Scholar
[3] Gröhn, F.; Bauer, B.J.; Amis, E.J.; MRS Conference Proceedings 2000, 628, CC2.7.Google Scholar
[4] Gröhn, F.; Bauer, B.J.; Amis, E.J.; Macromolecules, 2001, 34, 2179.Google Scholar
[5] Gröhn, F.; Bauer, B.J.; Amis, E.J.; Macromolecules 2001, submitted.Google Scholar
[6] Antonietti, M.; Göltner, C.; Angew. Chem Int. Eng. Ed. 1997, 36, 910.Google Scholar
[7] Antonietti, M.; Gröhn, F.; Hartmann, J.; Bronstein, L.; Angew. Chem Int. Eng. Ed. 1997, 36, 2080. Y1.2.11Google Scholar
[8] Jansen, J. F. G. A.; deBrabander-van den Berg, E. M. M.; Meijer, E.W.; Science 1994, 266, 1226.Google Scholar
[9] Zhao, M.; Sun, L.; Crooks, R. M.; J. Am. Chem. Soc. 1998, 120, 4877.Google Scholar
[10] Esumi, K.; Suzuki, A.; Aihara, N.; Usui, K.; Torigoe, K.; Langmuir 1998, 14, 3157.Google Scholar
[11] Balogh, L.; Tomalia, D.A.; J. Am. Chem. Soc. 1998, 120, 7355.Google Scholar
[12] Sooklal, K.; Hanus, L.H.; Ploehn, H.J.; Murphy, C.J.; Advan. Mater. 1998, 10, 1083.Google Scholar
[13] Zhao, M.Q.; Crooks, R.M.; Angew. Chem Int. Eng. Ed. 1999, 38, 364.Google Scholar
[14] Beck Tan, N.C.; Balogh, L.; Trevino, S.F.; Tomalia, D.A.; Lin, J.S.; Polymer 1999, 40, 2537.Google Scholar
[15] Zhao, M.; Crooks, R.M.; Adv. Mat. 1999, 11, 217.Google Scholar
[16] Garcia, M.E.; Baker, L.A.; Crooks, R.M.; Anal. Chem. 1999, 71, 256.Google Scholar
[17] Zhao, M.; Crooks, R.M.; Chem. Mat. 1999, 11, 3379.Google Scholar
[18] Esumi, K.; Suzuki, A.; Yamahira, A.; Torigoe, K.; Langmuir 2000, 16, 2604.Google Scholar
[19] Esumi, K.; Hosoya, T.; Suzuki, A.; Yamahira, A.; Torigoe, K.; Langmuir 2000, 16, 2978.Google Scholar
[20] Certain commercial materials and equipment are identified in this article in order to specify adequately the experimental procedure. In no case does such identification imply recommendation by the National Institute of Standards and Technology, nor does it imply that the material or equipment identified is necessarily the best available for this purpose.Google Scholar
[21] deBrabander-van den Berg, E.M.M.; Meijer, E.W.; Angew. Chem. 1993, 105, 1370.Google Scholar
[22] Glinka, C.; Barker, J.G., Hammouda, B.; Krueger, S.; Moyer, J.J.; Orts, W.J.; J. Appl. Cryst. 1998, 31, 430.Google Scholar
[23] Hsiau, B.S.; Chu, B.; Yeh, F.; NSLS Newsletter 1997, July1.Google Scholar
[24] Glatter, O.; Acta Phys. Austriaca 1977, 47, 83.Google Scholar
[25] Glatter, O.; J. Appl. Cryst. 1977, 10, 415.Google Scholar
[26] Glatter, O.; J. Appl. Cryst. 1980, 13, 7 and 577.Google Scholar
[27] Error bars are the measured standard deviation in I(q)Google Scholar
[28] The relative standard deviation in the SAXS intensity values in the range 0.2 nm-1 < q < 1.6 nm-1 is less than 3 %. At higher wavevectors, the relative standard deviation increases with q to a maximum value of 7 %.Google Scholar
[29] The relative standard deviation in the P(r) values is less than 3 %.Google Scholar
[30] Balogh, L.; presented at Particles 2001, Conference Orlando 2001.Google Scholar
[31] Gröhn, F.; Bauer, B.J.; Amis, E.J.; Manuscript in preparation.Google Scholar
[32] Breulmann, M.; Cölfen, H.; Hentze, H.P.; Antonietti, M.; Walsh, D.; Mann, S.; Adv. Mat. 1998, 10, 237.Google Scholar
[33] Bauer, B.J.; Prosa, T.J.; Kim, G.; Jackson, C.L.; Liu, D.W.; Amis, E.J.; in preparation.Google Scholar
[34] Scattering curves were shifted in order to allow for a better comparison and thus do not represent absolute intensities in this plot. The relative standard deviation in the SAXS intensity values for q < 1.5 nm-1 is less than 1%. At higher wavevectors, the relative standard deviation increases with q to a maximum value of 15 %.Google Scholar
[35] Bosman, A.W.; Janssen, H.M.; Meijer, E.W.; Chem. Rev. 1999, 99, 1665.Google Scholar
[36] Schenning, A.P.H.J.; Elissen-Roman, C.; Weener, J.W.; Baars, M.W.P.L.; vander Gast, S.J.; Meijer, E.W.; J. Am. Chem. Soc. 1998, 120, 8199.Google Scholar
[37] Baars, M.W.P.L.; Söntgens, S.H.M.; Fischer, H.M.; Peerlings, H.W.I.,; Meijer, E.W.; Chem. Eur. J. 1998, 4, 2456.Google Scholar