Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T15:25:55.520Z Has data issue: false hasContentIssue false

Innovative Processing Techniques for Intermetallic Matrix Composites

Published online by Cambridge University Press:  21 February 2011

N. S. Stoloff
Affiliation:
Materials Engineering Department, Rensselaer Polytechnic Institute, Troy, NY 12180–3590
D. E. Alman
Affiliation:
Materials Engineering Department, Rensselaer Polytechnic Institute, Troy, NY 12180–3590
Get access

Abstract

Although intermetallics based upon aluminum or silicon tend to have a very attractive combination of low density and excellent oxidation resistance, they suffer from lack of adequate creep strength and, in most cases, from inadequate ductility and toughness. It has been recognized for several years that an approach which could simultaneously solve both problems, without degrading other properties, is to utilize the intermetallics as matrices for composite materials. The consequence has been an explosion of interest in two-phase intermetallicbased alloys, as is manifested in the current symposium.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Seybolt, A.U., Trans ASM 59, 860 (1966).Google Scholar
2. Brindley, P.K. in High Temperature Ordered Intermetallic Alloys II, Stoloff, N.S. et al, eds., MRS 81, Pittsburgh, PA, 1987, pp. 419424.Google Scholar
3. Bose, A., Moore, B., Stoloff, N.S. and German, R.M., J. Met. 40 (9), 14 (1988).Google Scholar
4. German, R.M., Bose, A. and Stoloff, N.S. in High Temperature Ordered Intermetallic Alloys III, Liu, C.T., et al, (eds.) MRS 133, Pittsburgh, PA, 1989, pp. 403414.Google Scholar
5. Moore, B., Bose, A., German, R.M. and Stoloff, N.S., in High Temperature/High Performance Composites, MRS 120, Lemkey, F.D. et al eds., Pittsburgh, PA, 1988, pp. 5156.Google Scholar
6. Dibble, A.R., M.S. Thesis, Rensselaer Polytechnic Institute, May 1989.Google Scholar
7. Alman, D.E., Dibble, A., Moore, B., Bose, A., German, R.M. and Stoloff, N.S. in Processing of Ceramic and Metal Matrix Composites, Mostaghaci, H., ed., Pergamon Press, NY, 1989, pp. 217227.Google Scholar
8. Anton, D.L. in High Temperature/High Performance Composites, MRS, F.D. Lemkey, et al, MRS 120, Lemkey, F.D., et al, eds., Pittsburgh, PA, 1988, pp. 5764.Google Scholar
9. Bose, A. and German, R.M., Adv. Mater. Manuf. Proc. 3, 37 (1988).Google Scholar
10. Christodoulou, L., Parrish, P.A. and Crowe, C.R., in High Temperature/High Performance Composites, MRS 120, Lemkey, F.D., et al, eds., 1988, Pittsburgh, PA, pp. 2934.Google Scholar
11. Viswanadham, R.K., Whittenberger, J.D., Mannan, S.K. and Sprissler, B., in High Temperature/High Performance Composites, MRS 120, 1988, Lemkey, F.D., et al, eds., Pittsburgh, PA, pp. 8994.Google Scholar
12. Whitttenberger, J.D., Viswanadham, R.K., Mannan, S.K. and Kumar, K.S., J. Mater. Res. 4, 1164 (1984).Google Scholar
13. Whittenberger, J.D., Viswanadham, R.S., Mannan, S.K. and Spissler, B., J. Mater Sci, 25, 35 (1990).Google Scholar
14. Whittenberger, J.D., Mannan, S.K. and Kumar, K.S., Scripta Met, 23, 2055 (1989).Google Scholar
15. Marcus, H.L., Bourell, D.L., Eliezer, Z., Persad, C. and Weldon, W., Journal of Metals, Vol.39, (12) (1987).Google Scholar
16. Persad, C., Raghunathan, S., Lee, B.-H., Bourell, D.L., Eliezer, Z. and Marcus, H.L., MRS 120, Pittsburgh, PA, Lemkey, F.D., et al (eds.), 1988, pp. 23–28.Google Scholar
17. Persad, C., Lee, B.-H., Hou, C.-J., Eliezer, Z. and Marcus, H.L., in High Temperature Ordered Intermetallic Alloys III, MRS 133, Liu, C.T., et al (eds.), Pittsburgh, PA, 1989, pp. 717722.Google Scholar
18. Eliezer, Z., Lee, B.-H., Hou, C.-J., Persad, C., and Marcus, H.L., Metal and Ceramic Matrix Composites: Processing, Modeling and Mechanical Behavior, Bhagat, R.B., et al (eds.) TMS, Warrendale, PA, 1990, pp. 401412.Google Scholar
19. Jang, J.S.C. and Koch, C.C., Scripts Met., 22, 677 (1988).Google Scholar
20. Benn, R.C., Mirchandani, P.K. and Watwe, A.S., in Proc P/M 88, Modern Developments in Powder Metallurgy, APMI.Google Scholar
21. Vedula, K., Lauf, R.J. and Wells, C.A., ECUT Quarterly Rpt, 1985, July 1-Sept 30, Oak Ridge National Lab, p. 56.Google Scholar
22. Fuchs, G.E. in High Temperature Ordered Intermetallic Alloys III, Liu, C.T. et al, eds., MRS 133, Pittsburgh, PA, 1989, pp. 615620.Google Scholar
23. McKamey, C.G., Povirk, G.L., Horton, J.A., Tiegs, T.N. and Ohriner, E.K., in High Temperature Ordered Intermetallic Alloys III, Liu, C.T. et al, eds., MRS Symposia 133, Pittsburgh, PA 1989, pp 609614.Google Scholar
24. Brindley, P.K., Bartolotta, P.A. and Klima, S.J., Investigation of a SiC/Ti-24Al–11Nb Composite, NASA TM -100956, 1988.Google Scholar
25. Baumann, S.F., Brindley, P.K. and Smith, S.D., ”Reactive Zone Microstructure in a Ti3Al+Nb/SiC Composite”, TMS Fall Mtg, Sept 26–29, Chicago, IL 1988.Google Scholar
26. Nardone, V.C., UTRC, presented at DARPA program review, P&W Aircraft, Beach, W. Palm, FL, Mar 1, 1990.Google Scholar
27. Norman, J.H. and Reynolds, G.R. “Chemical Vapor Synthesis of Niobium Aluminides”, AFWAL-TR-88-4166, Oct 1988.Google Scholar
28. Mehrohtra, Y., Kuruvilla, A.K. and Stoloff, N.S., Materials Technologies Corp, unpublished.Google Scholar
29. Reynolds, G.H., et al, DARPA/ONR Program Review, Pratt & Whitney Aircraft, Beach, W. Palm, FL, Feb 29, 1990.Google Scholar
30. Seiers, P.A., Jackson, M.R., Mehan, R.L. and Rairden, J.R., GE CR&D Rpt 85CRDO01, Jan 1985.Google Scholar
31. Nourbakhsh, S., Liang, F.L. and Margolin, H., Met Trans A, 21A, 213 (1990).Google Scholar
32. Nourbakhsh, S., Liang, F.L. and Margolin, H., in High Temperature Ordered Intermetallic Alloys III, Liu, C.T., et al (eds.) MRS 133, Pittsburgh, PA, 459 (1989).Google Scholar
33. Nourbakhsh, S., Liang, F.L. and Margolin, H., in Processing of Ceramic and Metal Matrix Composites, Mostaghci, H., ed., Pergamon Press, NY 1989, pp 195205.Google Scholar
34. Nourbakhsh, S., Liang, L.L. and Margolin, H., J. Phys E: Sci Instrum 21, 898 (1988).Google Scholar
35. Murray, J., MS Thesis, RPI, Troy, NY 1989.Google Scholar
36. Oddone, R., MS Thesis, RPI, Troy, NY 1989.Google Scholar
37. German, R.M. and Bose, A., Mat Sci & Eng, A107, 107 (1989).Google Scholar
38. Nourbakhsh, S. and Margolin, H., Met Trans A, 20A, 2159 (1989).Google Scholar
39. Alman, D.E. and Stoloff, N.S., submitted to Int J Powder Met, (1990).Google Scholar
40. Lauf, R.J. and Wells, C.A., ECUT Quarterly Report, 1985, July 1-Sept 30, Oak Ridge National Lab, p. 56.Google Scholar
41. Whittenberger, D. in Solid State Powder Processing, Clauer, A.H. and Barbadillo, J.J., Eds. 1990, p. 137.Google Scholar
42. Luton, M., Jayanth, C.S., Disko, M.M., Matras, S. and Vallone, J. in Multicomponent Untrafine Structures, MRS 132, Pittsburgh, PA, 1989, p. 79.Google Scholar
43. Sayre, M.P. and Johnson, W.A.Aluminum Based Composite Powders and Process for Conducting Same”, U.S. Patent No. 4,755,221, July 5, 1988.Google Scholar
44. Walter, J. L. and Cline, H.E., Met Trans, 1, 1970, p. 1221.Google Scholar
45. Ishii, T., Duquette, D.J. and Stoloff, N.S., Acta Met 29, 1981, p. 1467.Google Scholar
46. Mazdiyasni, S. and Miracle, D.B., this symposium.Google Scholar
47. Mendiratta, M.G. and Dimiduk, D.M., in High Temperature Ordered Intermetallic Alloys III, Liu, C.T. et al (eds.) MRS 120, Pittsburgh, PA, 1989, pp. 441446.Google Scholar
48. Mendiratta, M.G., this symposium.Google Scholar
49. Mason, D.P., Van Aken, D.C. and Webber, J.G., Univ of Michigan, this symposium.Google Scholar
50. Watson, G.K., Pickens, J.W., Noebe, R.D., Brindley, P.K. and Draper, S.L. in HIGH TEMP Review 1988, NASA Publ 10025, p. 215.Google Scholar
51. Brindley, P.K. and Bartolotta, P.A. in HIGH TEMP Review 1988, NASA Publ. 10025,p. 225.Google Scholar
52. Maloney, M.J., DARPA/ONR program review, Pratt and Whitney Aircraft, Beach, W. Palm, FL, Feb 27, 1990.Google Scholar