Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:02:25.971Z Has data issue: false hasContentIssue false

Inner Material Requirements and Candidates Screening for Spent Fuel Disposal Canister

Published online by Cambridge University Press:  01 February 2011

Francesc Puig
Affiliation:
Dept. de Física i Enginyeria Nuclear. ETSEIB-UPC, Diagonal 647 PC, 08028 Barcelona. Spain
Javier Dies
Affiliation:
Dept. d'Enginyeria Química. ETSEIB-UPC, Diagonal 647 H-4, 08028 Barcelona. Spain
Manuel Sevilla
Affiliation:
Dept. de Física i Enginyeria Nuclear. ETSEIB-UPC, Diagonal 647 PC, 08028 Barcelona. Spain
Joan de Pablo
Affiliation:
Dept. d'Enginyeria Química. ETSEIB-UPC, Diagonal 647 H-4, 08028 Barcelona. Spain
Juan José Pueyo
Affiliation:
Dept. de Geoquímica, Facultat de Geologia (UB), Martí i Franqués, s/n, 08028 Barcelona, Spain
Lourdes Miralles
Affiliation:
Dept. de Geoquímica, Facultat de Geologia (UB), Martí i Franqués, s/n, 08028 Barcelona, Spain
Aurora Martínez-Esparza
Affiliation:
Enresa, C/ Emilio Vargas 7, 28043 Madrid, Spain
Get access

Abstract

In the context of the present Spanish ‘once-through’ nuclear fuel cycle, the need arises to complete the geological repository reference concept with a spent fuel canister final design. One of the main issues in its design is selecting the inner material to be placed inside the canister, between the steel walls and the spent fuel assemblies. The primary purpose of this material will be to avoid the possibility of a criticality event once the canister walls have been finally breached by corrosion and the spent fuel is flooded with groundwater. That is an important role because the increase in heat generation from such an event would act against spent fuel stability and compromise bentonite barrier functions, negatively affecting overall repository performance. To prevent this possibility a detailed set of requirements for a material to fulfil this role in the repository environment have been devised and presented in this paper. With these requirements in view, eight potentially interesting candidates were selected and evaluated: cast iron or steel, borosilicate glass, spinel, depleted uranium, dehydrated zeolites, haematite, phosphates, and olivine. Among these, the first four materials or material families are found promising for this application. In addition, other relevant non-performance-related aspects of candidate materials, which could help on decision making, are also considered and evaluated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Pablo, J. De, Casas, I., Gimenez, J., Molera, M., Rovira, M., Duro, L., and Bruno, J., Geochim. Cosmochim. Acta 63 (19-20), 30973103 (1999).Google Scholar
[2] Amme, M., Wiss, T., Thiele, H., Boulet, P., and Lang, H., J. Nucl. Mater. 341 (2-3), 209223 (2005).Google Scholar
[3] Risenmark, S., BR 93-150 (ABB Atom AB, Västerås, 1993).Google Scholar
[4] Agrenius, L., SKB Rapport 20.152 (SKB, Stockholm, 1993).Google Scholar
[5] Mennerdahl, D., SKI Report 02:51 (Statens kärnkraftinspektion, Stockholm, 1998).Google Scholar
[6] Oversby, V.M., SKB Report Number 94-3420-01 (SKB, Stockholm, 1994).Google Scholar
[7] McCright, R.D., UCRL-ID-119442 (LLNL, Livermore, CA, 1995).Google Scholar
[8] Cruz, B. de la, Rivas, P., Hernández, A., Marín, C., Villar, M.V., and Iglesia, A. de la, Publicación Técnica PT-01/99 (ENRESA, Madrid, 1999).Google Scholar
[9] Werme, L., SKB Technical Report TR-98-08 (SKB, Stockholm, 1998).Google Scholar
[10] Dies, J., Puig, F., Sevilla, M., Pablo, J. de, Pueyo, J.J., Miralles, L., and Martínez-Esparza, A., Publicación Técnica PT-03/2006 (ENRESA, Madrid, 2006).Google Scholar
[11] Bowyer, W.H., SKI Report 99:28 (Statens kärnkraftinspektion, Stockholm, 1999).Google Scholar
[12] Raiko, H., POSIVA 2005-02 (Posiva Oy, Helsinki, 2005).Google Scholar
[13] DOE (U.S. Department of Energy), DOE/RW-0539-1, Rev. 1 (Office of Civilian Radioactive Waste Management, 2002).Google Scholar
[14] CRWMS M&O (Civilian Radioactive Waste Management System Management and Operating Contractor), SDD-UDC-SE-000001, Rev. 1 (Las Vegas, NV, 2000).Google Scholar
[15] Andersson, C.G., Eriksson, P., Westman, M., and Emilsson, G., SKB Technical Report TR-04-23 (SKB, Stockholm, 2004).Google Scholar
[16] Forsberg, C.W., ORNL/TM-13502 (ORNL, Oak Ridge, TN, 1997).Google Scholar
[17] Johnson, L., Schneider, J., Zuidema, P., Gribi, P., Mayer, G., and Smith, P., Technical Report NTB 02-05 (Nagra, Wettingen, 2002).Google Scholar
[18] Andersson, C.G., SKB Technical Report TR-02-07 (SKB, Stockholm, 2002).Google Scholar
[19] Raiko, H., Working Report 2005-53 (Posiva Oy, Helsinki, 2005).Google Scholar
[20] Guinan, M.W., SKB Technical Report TR-01-32 (SKB, Stockholm, 2001).Google Scholar
[21] Missana, T., García-Gutiérrez, M., and Fernández, V., Geochim. Cosmochim. Acta 67 (14), 25432550 (2003).Google Scholar
[22] Rovira, M., Casas, I., Giménez, J., Clarens, F., and Pablo, J. de, Publicación Técnica PT-03/2004 (ENRESA, Madrid, 2004).Google Scholar
[23] Gray, L.W., UCRL-ID-118819 (LLNL, Livermore, CA, 1996).Google Scholar
[24] Donald, I.W., Metcalfe, B.L., and Taylor, R.N.J., J. Mater. Sci. 32 (22), 58515887 (1997).Google Scholar
[25] Rokhvarger, A.E. and Khizh, A.B., U.S. Patent No. 5 911 941 (15 June 1999).Google Scholar
[26] Rokhvarger, A.E. and Khizh, A.B., U.S. Patent No. 6 054 700 (25 April 2000).Google Scholar
[27] Wilfinger, K.R., UCRL-ID--130734 (LLNL, Livermore, CA, 1998).Google Scholar
[28] Adams, J., Cowgill, M., Moskowitz, P., and Rokhvarger, A., “Effect of radiation on spinel ceramics for permanent containers for nuclear waste transportation and storage”, in Proc. of the Amer. Ceramic Soc. 102nd Ann. Mtg. and Exposition (St. Louis, MO, 2000).Google Scholar
[29] U.S. Nuclear Regulatory Commission, In the Matter of Louisiana Energy Services, L.P. (National Enrichment Services), CLI-05-05, 70-3103-ML, January 18, 2005.Google Scholar
[30] Forsberg, C.W. and Dole, L.R. in Scientific Basis for Nuclear Waste Management XXVI, edited by Finch, R. and Bullen, D. (Mater. Res. Soc. Symp. Proc. 757, Pittsburg, PA, 2003), pp. 677684.Google Scholar
[31] Hahne, E., Spindler, K., and Griesinger, A., SFB 270 B4 (Univ. Stuttgart, 1996).Google Scholar
[32] Duro, L., F. El Aamrani, Rovira, M., Giménez, J., Casas, I., Pablo, J. de, and Bruno, J., Appl. Geochem. 20 (7), 12841291 (2005).Google Scholar
[33] Agrenius, L., SKB Technical Report TR-02-17 (SKB, Stockholm, 2002).Google Scholar
[34] Hicks, T., Prescott, A., SKI Report 00:13 (Statens kärnkraftinspektion, Stockholm, 2000).Google Scholar
[35] Anttila, M., Working Report 99-03 (Posiva Oy, Helsinki, 1999).Google Scholar
[36] Anttila, M., Working Report 2005-13 (Posiva Oy, Helsinki, 2005).Google Scholar
[37] Oversby, V.M. in Scientific Basis for Nuclear Waste Management XXI, edited by McKinley, I.G. and McCombie, C. (Mater. Res. Soc. Symp. Proc. 506, Pittsburg, PA, 1998), pp. 781788.Google Scholar
[38] Andersson, C.G., SKB Technical Report TR-98-09 (SKB, Stockholm, 1998).Google Scholar
[39] Forsberg, C.W., Storch, S.N., and Childs, K.W., “Depleted uranium dioxide as SNF Waste Package Particulate Fill: Engineering Properties” 9th International High-Level Radioactive Waste Management Conference (Las Vegas, NV, 2001).Google Scholar
[40] Broczkowski, M.E., Noel, J.J., and Shoesmith, D.W., J. Nucl. Mater. 346 (1), 1623 (2005).Google Scholar
[41] Spahiu, K., Devoy, J., Cui, D.Q., and Lundstrom, M., Radiochim. Acta 92 (9-11), 597601 (2004).Google Scholar
[42] Zielinski, A. and Domzalicki, P. , J. Mater. Process. Technol. 133 (1-2), 230235 (2003).Google Scholar
[43] Bonin, B., Colin, M., and Dutfoy, A., J. Nucl. Mater. 281 (1), 114 (2000).Google Scholar
[44] Horseman, S.T., Harrington, J.F., and Sellin, P., Eng. Geol. 54 (1-2), 139149 (1999).Google Scholar
[45] Ortiz, L., Volckaert, G., and Mallants, D., Eng. Geol. 64 (2-3), 287296 (2002).Google Scholar