Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T02:35:43.607Z Has data issue: false hasContentIssue false

Inkjet Printing of Conductive Materials for Smart Textiles and Flexible Electronics

Published online by Cambridge University Press:  31 January 2011

Veronica Sanchez Romaguera
Affiliation:
[email protected], The University of Manchester, School of Chemistry, Manchester, United Kingdom
Marie B. Madec
Affiliation:
[email protected], The University of Manchester, School of Chemistry, Manchester, United Kingdom
Stephen G. Yeates
Affiliation:
[email protected], The University of Manchester, School of Chemistry, Manchester, United Kingdom
Get access

Abstract

In recent years, inkjet printing has become an important technology for many applications, such as organic electronics, nanotechnology, and tissue engineering, on account of its ability to precisely deposit pico litre volumes of solutions or suspensions, including polymers and metal nanoparticles, in well-defined patterns [1]. In this work we focus on the electrical performance of PEDOT:PSS conductors inkjet printed onto natural rubber latex and the effect of mechanical deformation on conductor integrity and electrical performance. 1. B.-J de Gans, P. C. Duineveld and U. S. Schubert, Adv. Mater., 16, (2004).

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Tekin, E., Smith, P. J. and Schuber, U. S., Soft Matter, 4, 703, (2008).10.1039/b711984dGoogle Scholar
2 Maccioni, M., Orgiu, E., Cosseddu, P., Locci, S. and Bonfiglio, A., Applied Physics Letters, 89, 143515–1, (2006)10.1063/1.2357030Google Scholar
3 Lacour, S. P., Jones, J., Wagner, S., Li, T. and Suo, Z., Proceedings of the IEEE, Vol. 93, No. 8, 1459, (2005).10.1109/JPROC.2005.851502Google Scholar
4 Li, T., Huang, Z.Y., Xi, Z.C., Lacour, S.P., Wagner, S. and Sou, Z., Mechanics of Materials, 37, 261 (2005).10.1016/j.mechmat.2004.02.002Google Scholar
5 Lacour, S. P., Wagner, S., Huang, Z. and Sou, A., Appl. Phys. Lett., 82, 2004 (2003).10.1063/1.1565683Google Scholar
6 Jones, J., Lacour, S.P., Sou, Z. and Wagner, S., Mater. Res. Soc. Proc., Vol. 769, pp. H.6.12.1 (2003).10.1557/PROC-769-H6.12Google Scholar
7 Lacour, S.P., Jones, J., Sou, Z. and Wagner, S., IEEE Electron Device Lett., 25, 179 (2004).10.1109/LED.2004.825190Google Scholar
8 Sirringhaus, H., Kawase, T., Friend, R. H., Shimoda, T., Inbasekaran, M. and Wu, W., Woo, E.P., Science, 290, 2123, (2000),.10.1126/science.290.5499.2123Google Scholar
9 Lopez, M. A., Sanchez, J. C. and Estrada, M., Proceedings of the 7th International Caribbean Conference on Devices, Circuits and Systems, Apr. 28-30 2008, Mexico, p.14 Google Scholar
10 Hansen, T. S., Hassager, O., Larsen, N. B. and Clark, N. B., Synthetic Metals, 157, 961 (2007).10.1016/j.synthmet.2007.10.003Google Scholar
11http://www.dimatix.com/files/Dimatix-Materials-Printer-Jettable-Fluid-Formulation-Guidelines.pdfGoogle Scholar
12 Sanchez-Romaguera, V., Madec, M.-B. and Yeates, S. G., Reactive & Functional Polymers 68, 1052 (2008).10.1016/j.reactfunctpolym.2008.02.007Google Scholar
13 Wagner, S., Lacour, S.P., Jones, J., Hsu, P.-H.I., Sturm, J. C., Li, T. and Sou, Z., Physica E, 25, 326 (2004).10.1016/j.physe.2004.06.032Google Scholar