Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T07:35:18.072Z Has data issue: false hasContentIssue false

Injecting Inter-Layers and the Built-in Potential of Blue Polymer Light-Emitting Diodes

Published online by Cambridge University Press:  21 March 2011

Thomas M. Brown
Affiliation:
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, UK.
Ian S. Millard
Affiliation:
CDT Ltd, Greenwich House, Madingley Road, Cambridge, CB3 OHJ, UK.
David J. Lacey
Affiliation:
CDT Ltd, Greenwich House, Madingley Road, Cambridge, CB3 OHJ, UK.
Jeremy H. Burroughes
Affiliation:
CDT Ltd, Greenwich House, Madingley Road, Cambridge, CB3 OHJ, UK.
Richard H. Friend
Affiliation:
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, UK. CDT Ltd, Greenwich House, Madingley Road, Cambridge, CB3 OHJ, UK.
Franco Cacialli
Affiliation:
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, UK.
Get access

Abstract

The semiconducting-polymer/injecting-electrode heterojunction plays a crucial part in the operation of organic solid state devices. In polymer light-emitting diodes (LEDs), a common fundamental structure employed is Indium-Tin-Oxide/Polymer/Al. However, in order to fabricate efficient devices, alterations to this basic structure have to be carried out. The insertion of thin layers, between the electrodes and the emitting polymer, has been shown to greatly enhance LED performance, although the physical mechanisms underlying this effect remain unclear. Here, we use electro-absorption measurements of the built-in potential to monitor shifts in the barrier height at the electrode/polymer interface. We demonstrate that the main advantage brought about by inter-layers, such as poly(ethylenedioxythiophene)/poly(styrene sulphonic acid) (PEDOT:PSS) at the anode and Ca, LiF and CsF at the cathode, is a marked reduction of the barrier to carrier injection. The electro- absorption results also correlate with the electroluminescent characteristics of the LEDs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Parker, I. D., J. Appl. Phys. 75, 1656 (1994).Google Scholar
2. Carter, S. A., Angelopoulos, M., Karg, S., Brock, P. J., and Scott, J. C., Appl. Phys. Lett. 70, 2067 (1997).Google Scholar
3. Brown, T. M., Kim, J. S., Friend, R. H., Cacialli, F., Daik, R., and Feast, W. J., Applied Physics Letters 75, 1679 (1999).Google Scholar
4. Hung, L. S., Tang, C. W., and Mason, M. G., Applied Physics Letters 70, 152 (1997).Google Scholar
5. Jabbour, G. E., Kawabe, Y., Shaheen, S. E., Wang, J. F., Morrell, M. M., Kippelen, B., and Peyghambarian, N., Applied Physics Letters 71, 1762 (1997).Google Scholar
6. Kido, J. and Iizumi, Y., Appl. Phys. Lett. 73, 2721 (1998).Google Scholar
7. Piromreun, P., Oh, H., Shen, Y. L., Malliaras, G. G., Scott, J. C., and Brock, P. J., Appl. Phys. Lett. 77, 2403 (2000).Google Scholar
8. Wolf, U. and Bassler, H., Applied Physics Letters 74, 3848 (1999).Google Scholar
9. Shaheen, S. E., Jabbour, G. E., Morrell, M. M., Kawabe, Y., Kippelen, B., Peyghambarian, N., Nabor, M. F., Schlaf, R., Mash, E. A., and Armstrong, N. R., Journal of Applied Physics 84, 2324 (1998).Google Scholar
10. Le, Q. T., Yan, L., Gao, Y. G., Mason, M. G., Giesen, D. J., and Tang, C. W., Journal of Applied Physics 87, 375 (2000).Google Scholar
11. Schlaf, R., Parkinson, B. A., Lee, P. A., Nebesny, K. W., Jabbour, G., Kippelen, B., Peyghambarian, N., and Armstrong, N. R., Journal of Applied Physics 84, 6729 (1998).Google Scholar
12. Mori, T., Fujikawa, H., Tokito, S., and Taga, Y., Applied Physics Letters 73, 2763 (1998).Google Scholar
13. Yoshimura, D., Yokoyama, T., Ito, E., Ishii, H., Ouchi, Y., Hasegawa, S., and Seki, K., Synthetic Metals 102, 1145 (1999).Google Scholar
14. Campbell, I. H., Hagler, T. W., Smith, D. L., and Ferraris, J. P., Phys. Rev. Lett. 76, 1900 (1996).Google Scholar
15. Greczynski, G., Fahlman, M., and Salaneck, W. R., Journal of Chemical Physics 113, 2407 (2000).Google Scholar
16. Choong, V.-E., Park, Y., Gao, Y., Wehrmeister, T., Mullen, K., Hsieh, B. R., and Tang, C. W., J. Vac. Sci. Technol. A 15, 1745 (1997).Google Scholar
17. Greczynski, G., Salaneck, W. R., and Fahlman, M., Synth. Metals (In press).Google Scholar
18. Heil, H., Steiger, J., Karg, S., Gastel, M., Stoessel, M., Ortner, H., and Seggern, H. von, J. Appl. Phys. (in press).Google Scholar
19. Brown, T. M., Friend, R. H., Millard, I. S., Lacey, D. J., Burroughes, J. H., and Cacialli, F., Appl. Phys. Lett. 77, 3096 (2000).Google Scholar