Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:46:00.382Z Has data issue: false hasContentIssue false

Initial Distribution Effects on Diffusion-Limited Reactions in Constrained Geometries

Published online by Cambridge University Press:  10 February 2011

Katja Lindenberg
Affiliation:
Department of Chemistry and Biochemistry and Institute for Nonlinear Science, University of California at San Diego. La Jolla, CA 92093–0340
A. H. Romero
Affiliation:
Department of Chemistry and Biochemistry and Department of Physics, University of California at San Diego, La Jolla, CA 92093–0340
J. M. Sancho
Affiliation:
Departament d'Estructura i Constitutents de la Matèria, Universitat de Barcelona, Av. Diagonal 647, E-08028 Barcelona, Spain
Get access

Abstract

We present a study of the effects of the initial distribution on the kinetic evolution of irreversible binary reactions in low dimensions. We focus on the role of initial density fluctuations and, in particular, on the role of the long wavelength components of the initial fluctuations, in the creation of the macroscopic patterns that lead to the well-known kinetic anomalies in this system. The frequently studied random initial distribution is but one of a variety of possible distributions leading to interesting anomalous behavior. Our discussion includes initial distributions that suppress and ones that enhance the initial long wavelength components.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Argyrakis, P., Kopelman, R., R, . and Lindenberg, K., Chem. Phys. 177, 693707 (1993).Google Scholar
2. Lindenberg, K., Argyrakis, P., and Kopelman, R., in Noise and Order: The New Synthesis, ed. Millonas, M., Springer, New York, 1996, pp. 171203.Google Scholar
3. Ovchinnikov, A. A. and Zeldovich, Y. B., Chem. Phys. 28, 215218 (1978).Google Scholar
4. Burlatskii, S. F., Ovchinnikov, A. A. and Oshanin, G. S., Phys. Lett. A 139, 245248 (1989) and REFERENCES therein.Google Scholar
5. Abramson, G., Bru Espino, A., Rodriguez, M. A. and Wio, H. S., Phys. Rev. E 50, 43194326 (1994).Google Scholar
6. Abramson, G., Cinètica anòmala en sistemas bimoleculares de reacción-difusión, PhD thesis (1995).Google Scholar
7. Lindenberg, K., Argyrakis, P. and Kopelman, R., J. Phys. Chem. 98, 33893397 (1994).Google Scholar
8. Vitukhnovsky, A. G., Pyttel, B. L. and Sokolov, I. M., Phys. Lett. A 128, 161165 (1988).Google Scholar
9. Sancho, J. M., Romero, A. H., Lindenberg, K., Sagués, F., Reigada, A. and Lacasta, A. M., to appear in J. Phys. Chem. (1996);Google Scholar
Lindenberg, K., Romero, A. H. and Sancho, J. M., submitted for publication (1996).Google Scholar
10. Fractal initial conditions have been considered in the context of aggregation phenomena in Provata, A., Takayasu, H. and Takayasu, M., Europh. Lett. 33, 99104 (1996).Google Scholar
11. Vicsek, T. Fractal Growth Phenomena 2nd edition, World Scientific, Singapore, 1992, pp. 2425.Google Scholar