Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T13:58:25.792Z Has data issue: false hasContentIssue false

InGaP Layers Grown on Different GaAs Surfaces for High Efficiency Solar Cells

Published online by Cambridge University Press:  31 January 2011

Oscar Martínez
Affiliation:
[email protected], University of Valladolid, Valladolid, Spain
Vanesa Hortelano
Affiliation:
[email protected], University of Valladolid, Valladolid, Spain
Vicente Parra
Affiliation:
[email protected], Grupo Pevafersa, Zamora, Spain
Juan Jimenez
Affiliation:
[email protected], University of Valladolid, Paseo de Belén, 1, Valladolid, 47011, Spain
Tatiana Prutskij
Affiliation:
[email protected], Instituto de Ciencias, BUAP, Puebla, Mexico
Claudio Pelosi
Affiliation:
[email protected], IMEM Institute, Parma, Italy
Get access

Abstract

InGaP layers grown on non-polar and polar GaAs substrate faces are investigated by Raman spectroscopy, microphotoluminescence and cathodoluminescence. The growth on polar faces benefits disorder respect to the layers grown on non polar (001) faces. It is shown that both (111)Ga and (111)As faces result in disordered InGaP layers. However, the layers grown on (111)As faces present inhomogeneous composition. The layers grown on (111)Ga faces present homogeneous composition close to lattice matching and are almost disordered.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Yamaguchi, M. Takamoto, T. and Araki, K. Solar Energy Materials & Solar Cells 90, 3068(2006).Google Scholar
2 Mooney, P.M. J. Appl. Phys. 67, R1 (1990).Google Scholar
3 Smith, D.L. Sol. St. Commun. 57, 919(1986).Google Scholar
4 Hopkinson, M. David, J.P.R., Khoo, E.A. Pabla, A.S. Woodhead, J. and Rees, G.J. J. Microelectron. 26, 805(1995).Google Scholar
5 Zhang, Y., Mascarenhas, A., and Wang, L.W. Appl. Phys. Lett. 80, 3111(2002).Google Scholar
6 Wei, S. H. and Zunger, A. Phys. Rev. B 49, 14337(1994).Google Scholar
7 Lucovsky, G. Brodsky, M.H. Chen, M.F. Chicotka, J. and Ward, A.T. Phys. Rev. B 4, 1945(1971).Google Scholar
8 Zachau, M. and Masselink, W.T. Appl. Phys. Lett. 60, 2098(1992).Google Scholar
9 Stringfellow, G. B. J. Appl. Phys. 43, 3455(1972).Google Scholar
10 Scardova, S. Pelosi, C. Attolini, G. Lo, B. Martìnez, O., Martìn, E., Ardila, A. M. and Jiménez, J., Phys. Stat. Sol. (a) 195, 50(2003).Google Scholar
11 Bongers, M.M.G. Bastos, P.L. Anders, M.J. and Giling, L.J. Journal of Crystal Growth 171, 333(1997).Google Scholar