Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T18:47:13.229Z Has data issue: false hasContentIssue false

Infrared-Photoconductivity Due to Sub-Band Transitions in PbTe/Pb1−xEuxTe and PbSe/Pb1−xMnxSe

Published online by Cambridge University Press:  15 February 2011

Shu Yuan
Affiliation:
Institute für Halbleiterphysik, Universität Linz, A-4040 Linz, Austria
G. Springholz
Affiliation:
Institute für Halbleiterphysik, Universität Linz, A-4040 Linz, Austria
N. Frank
Affiliation:
Institute für Halbleiterphysik, Universität Linz, A-4040 Linz, Austria
H. Krenn
Affiliation:
Institute für Halbleiterphysik, Universität Linz, A-4040 Linz, Austria
G. Bauer
Affiliation:
Institute für Halbleiterphysik, Universität Linz, A-4040 Linz, Austria
M. Kriechbaum
Affiliation:
Institute für Theortische physik, Universität Graz, A-8010 Graz, Austria
Get access

Abstract

The photoconductive (PC) properties of MBE grown PbTe/Pb1−xEuxTe (x<6.7%) and of PbSe/Pb1−xMnxSe (x<3%) multi quantum (MQW) well samples were investigated in the midinfrared region from 100 meV to 500 meV in the temperature range from 5 K up to 210 K. Whereas in PbTe/Pb1−xEuxTe MQW's electrons and holes are confined in the PbTe layers, PbSe/Pb1−xMnxSe forms a staggered system with electrons confined in the PbSe/Pb1−xMnxSe layers and holes confined in the PbSe layers. Consequently, the transitions between electric subbands in the PbTe/Pb1−xEuxTe MQW's give rise to a step like increase of the PC signal whenever the photon energy hv coincides with the interband transition energies between hole and electron subbands (selection rule Δn = 0). For the range of well widths investigated (42 Å to 91 Å ) distinctive steps in the photoconductivity spectra were observed. In the PbSe/Pb1−xMnxSe MQW's the absorption signals show a typical type II superlattice (SL) behaviour and thus the photoconductivity response is also much weaker than for the PbTe/Pb1−xEuxTe MQW's.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] For a recent review see e.g.: Levine, B. F., Semicond.Sci.Technol. 8, S 400 (1993).CrossRefGoogle Scholar
[2] Holloway, H., Physics of Thin Films, ed.Haas, G. and Francombe, M. H. (Academic Press, New York), Vol.11, p. 105 Google Scholar
[3] Partin, D. L., IEEE Quantum Electronics QE 24, 1716 (1988).Google Scholar
[4] Zogg, H., Maissen, C., Masek, J., Hoshino, T.,Blunier, S., and Tiwari, A. N., Semicond.Sci.Technol. 6, C36 (1991).Google Scholar
[5] Shu, Yuan, Springholz, G., Krenn, H., Bauer, G.,Kriechbaum, M., Appl.Phys.Lett. 62 885, (1993).Google Scholar
[6] Kriechbaum, M., Springer Ser.Solid State Sci. 63, 120 (1984).Google Scholar
[7] Geist, F., Pascher, H., Frank, N., Bauer, G., and Kriechbaum, M., Semicond. Sci. Technol. 8, S147 (1993).Google Scholar
[8] Campbell, I. H., Sela, I., Laurich, B. K., Smith, D. L., Bolognesi, C. R., Samoska, L. A., Gossard, A. C., and Kroemer, H., Appl.Phys.Lett. 59, 846 (1991).Google Scholar
[9] Hofmann, W., Fichtel, U., Pascher, H., Frank, N.,Bauer, G., Phys. Rev. B 45, 8742 (1992).Google Scholar