Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T09:08:08.207Z Has data issue: false hasContentIssue false

Infrared Studies of the Double Acceptor Zinc in Silicon

Published online by Cambridge University Press:  25 February 2011

A. Dörnen
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-7000 Stuttgart 80, FRG
R. Kienle
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-7000 Stuttgart 80, FRG
K. Thonke
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-7000 Stuttgart 80, FRG
P. Stolz
Affiliation:
Institut für angewandte Physik, Universität Erlangen, D-8520 Erlangen, FRG
G. Pensl
Affiliation:
Institut für angewandte Physik, Universität Erlangen, D-8520 Erlangen, FRG
D. Grünebaum
Affiliation:
Institut für MetalIforschung, Universität Münster, D-4400 Münster, FRG
N.A. Stolwijk
Affiliation:
Institut für MetalIforschung, Universität Münster, D-4400 Münster, FRG
Get access

Abstract

In the present paper, optical absorption studies on the neutral charge state of the double acceptor zinc in silicon are presented. Measurements were carried out in the mid infrared (MIR) and in the near infrared (NIR) region. The MIR absorption spectra show the excitation series of an effective-masslike hole, from which the Zn° level position is calculated to be at Ev + 319. 1 meV. A splitting of the ground state into 3 sublevels is assigned to hole-hole coupling and crystal-field splitting. Absorption spectra obtained in the NIR are interpreted in terms of an A° X-type bound exciton.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 for an overview and further references see: Ramdas, A. K. and Rodriguez, S., Rep. Prog. Phys. 44. 1297 (1981).Google Scholar
2 Crouch, R.K., Robertson, J.B., and Gilmer, T.E. Jr., Phys. Rev B 5, 3111 (1972).Google Scholar
3 Kleverman, M., and Grimmeiss, H.G., Semicond. Sci. Technol. 1, 45 (1986).Google Scholar
4 Tomokage, H., Nakashima, H., and Hashimoto, K., Jap. J. Appl. Phys. 21, 805 (1982).Google Scholar
5 Fuller, C.S. and Morin, F.J., Phys. Rev. 105, 379 (1957).Google Scholar
6 Carlson, R.O., Phys. Rev. 108, 1390 (1957).Google Scholar
7 Lemke, H., phys. stat. sol. (a) 72, 177 (1982), A.C. Wang, L.S. Lu, and C.T. Sah, Phys. Rev. B 30, 5896 (1984).Google Scholar
8 Stolz, P., Pensl, G., Grünebaum, D., Stolwijk, N., to be published in Materials Science and Engineering, 1989.Google Scholar
9 Kornilov, B.V., Soviet Physics - Solid State 5, 2420 (1964), Y.I. Zavadskii and B.V. Kornilov, phys. stat. sol. 42, 617 (1970).Google Scholar
10 Slensky, A.F. and Bube, R.H., Phys. Rev B 6, 1328 (1972), J.M. Herman III and C.T. Sah, J. Appl. Phys. 44, 1259 (1973).Google Scholar
11 Tardella, A. and Pajot, B., J. Physique 43, 1789 (1982).Google Scholar
12 Armelles, G., Barrau, J. , Brousseau, M., Pajot, B., and Naud, C., Solid State Commun. 56, 303 (1985).Google Scholar
13 Baldereschi, A. and Lipari, N.O., Proc. 13th Int. Conf. on Physics of Semiconductors, Ed: Fumi, F.G. (Tipografia Marves, Rome, 1976), p. 595.Google Scholar
14 Mayo, S., Lowney, J.R., and Bell, M.I., in “Microscopic Identification of Electronic Defects in Semiconductors”, Ed.: Johnson, N.M., Bishop, S.G. and Watkins, G.D., Mat. Res. Soc. Symp. Proc. 46, (Pittsburgh 1986), p. 297 Google Scholar
15 Watkins, G.D. and Beall Fowler, W., Phys. Rev. B 16, 4524 (1977).Google Scholar
16 The binding energy of this center is close to the value obtained for the electrically active center Zn(X2), observed in DLTS [12]. Therefore we accept this nomenclature for the optically active center. Additional correlations will be reported elsewhere.Google Scholar
17 Thewalt, M.L.W., Labrie, D., Booth, I.J., Clayman, B. P., Lightowlers, E. C., and Haller, E.E., Physica 146B, 47 (1987).Google Scholar
18 Chapman, R.A., Hutchinson, W.G., and Estle, T. L., Phys. Rev. Lett. 17, 132 (1966).Google Scholar
19 Thewalt, M.L.W., Clayman, B.P., and Labrie, D., Phys. Rev. B32, 2663 (1985).Google Scholar
20 Elliot, K.R., Osbourn, G.C., Smith, D.L., and McGill, T.C., Phys. Rev. B 17, 1808 (1978).Google Scholar
21 Vouk, M.A. and Lightowlers, E.C., J. of Luminescence 11, 357 (1977).Google Scholar
22 Nevin, J.H. and Henderson, H.T., J. Appl. Phys. 46, 2130 (1975).Google Scholar