Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T18:42:06.555Z Has data issue: false hasContentIssue false

Infrared Spectroscopy of Deuterated a-Si, Ge:D, F Alloys Prepared by DC Glow Discharge Deposition

Published online by Cambridge University Press:  28 February 2011

Y. Okada
Affiliation:
Department of Electrical Engineering, Princeton University Princeton, New Jersey 08544
D. Slobodin
Affiliation:
Department of Electrical Engineering, Princeton University Princeton, New Jersey 08544
S. F. Chou
Affiliation:
Department of Electrical Engineering, Princeton University Princeton, New Jersey 08544
R. Schwarz
Affiliation:
Department of Electrical Engineering, Princeton University Princeton, New Jersey 08544
S. Wagner
Affiliation:
Department of Electrical Engineering, Princeton University Princeton, New Jersey 08544
Get access

Abstract

Deuterated and fluorinated amorphous silicon-germanium alloys, a-Si, Ge:D, F, were studied by Fourier transform infrared (IR) spectroscopy. No Ge.-F modes are observed. The intensity of the Si-F and Si-F2 modes increases with Ge concentration. So does thae intensity of SiF4 which is trapped as isolated molecules. No DF (IR) or F2 (Raman) is observed. The IR spectra of alloys annealed at 300, 400, 500 and 600° C show that the fluorine in the Si-F and Si-F2 groups and in the SiF4 molecules is in thermochemical equilibrium.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

a. On leave of absence from Research Center, Toyobo Co. Ltd., Otsu, Shiga, JapanGoogle Scholar
1. Guttman, L., Phys. Rev. B 23, 1866 (1981)Google Scholar
2. Brodsy, M.H., Cardona, M. and Cuomo, J.J., Phys. Rev. B 16, 3556 (1977)Google Scholar
3. Phillips, J.C., Phys. Rev. Lett. 42, 1151 (1979)Google Scholar
4. Moustakas, T.D., Sol. Eng. Mater. 8, 187 (1982)CrossRefGoogle Scholar
5. Smith, Z.E., Aljishi, S., Slobodin, D., Chu, V., Wagner, S., Lenahan, P.M., Arya, R.R. and Bennett, M.S., to be published.Google Scholar
6. Street, R.A., Kakalios, J. and Hayes, T.M., to be published.Google Scholar
7. Nozawa, K., Yamaguchi, Y., Hanna, J. and Shimizu, I., J. Non-cryst. Solid 59 & 60, 533 (1983)Google Scholar
8. Yang, J., Ross, R., Mohr, R. and Fourier, J., 18th IEEE PVSC, Las Vegas, 1985, to be published.Google Scholar
9. Shimada, T., Katayama, Y. and Horigome, S., Jpn. J.Appl. Phys. 19, L265 (1980)CrossRefGoogle Scholar
10. Madan, A., Ovshinsky, S.R. and Benn, E., Phil. Mag. 40, 259 (1979)Google Scholar
11. Ley, L., Shank, H.R., Fang, C.J., Gruntz, K.J. and Cardona, M., Jpn. J. Phys. Soc. Suppl. A 49, 124 (1980)Google Scholar
12. Fang, C.J., Ley, L., Shank, H.R., Gruntz, K.J. and Cardona, M., Phys. Rev. B 22, 6140 (1980)Google Scholar
13. Oda, S., Yamaguchi, Y., Hanna, J., Ishihara, S., Fujiwara, R., Kuwata, S. and Shimizu, I., Proc. Int. PVSEC-1, Kobe, Japan 1984, p.419 Google Scholar
14. Slobodin, D., Alijishi, S., Schwarz, R. and Wagner, S., Proc. Mat. Res. Soc. Symp. Proc. Vol. 49, p.153, Material Research Society, 1985.Google Scholar
15. Matsumura, H., Sakai, K., Kawakyu, Y. and Furukawa, S., J.Appl. Phys. 52, 5537 (1981)Google Scholar