No CrossRef data available.
Article contents
Infrared Lattice Vibrations of Nitrogen-doped ZnO Thin Films
Published online by Cambridge University Press: 01 February 2011
Abstract
Nitrogen (N) is the most promising p-type dopant for zinc oxide (ZnO), and its bonding state must be governed by the substitution of N atoms into anion sites. We have synthesized un-doped ZnO and N-doped ZnO thin films by utilizing a pulsed laser deposition (PLD) method. The N-doped ZnO thin film possessed shorter c-axis length than the un-doped ZnO thin film. This fact seems to be owing to that Zn-N bond length is shorter than Zn-O bond length in wurtzite structure. Besides, from the result of Fourier transform infrared (FT-IR) measurement, the absorption peak of the N-doped ZnO thin film emerged at 406 cm−1, and was attributed to transverse optical (TO) phonon of E1 mode. The infrared lattice vibrations of the N-doped ZnO thin films can be induced by the complex factors consisting of not only the decreases in reduced mass and interionic distance, but also the increase in covalency.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2008