Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:09:16.764Z Has data issue: false hasContentIssue false

Infrared and Ultraviolet Analysis of Dual-Ion Implanted Gaas

Published online by Cambridge University Press:  22 February 2011

Beatrys M. Lacquet
Affiliation:
Sensors Sources and Signal Processing Research Group, Faculty of Engineering, Rand Afrikaans University, PO Box 524, Auckland Park 2006, South Africa
Gustavo E. Aizenberg
Affiliation:
Sensors Sources and Signal Processing Research Group, Faculty of Engineering, Rand Afrikaans University, PO Box 524, Auckland Park 2006, South Africa
Pieter L. Swart
Affiliation:
Sensors Sources and Signal Processing Research Group, Faculty of Engineering, Rand Afrikaans University, PO Box 524, Auckland Park 2006, South Africa
Get access

Abstract

Semi-insulating <100> GaAs was implanted with 170 ke V H+ and P+ ions at room temperature using a PH3 source. Fourier analysis of the bilinear transformed optical reflectance data in the infrared region of the spectrum indicated the presence of two damaged layers at different depths from the surface: (i) a deep inhomogeneous layer of low damage produced by the protons and (ii) a thin amorphized surface layer which was produced by phosphorus ions. The position and refractive index at the peak of the assumed gaussian damage profile caused by the protons, as well as the standard deviation of the profile, were estimated rapidly from the processed data. The thickness and refractive index of the surface layer were also estimated from this analysis. The presence of the amorphized surface layer was evident from the reflectance in the ultraviolet where shift and broadening of the reflectance peaks associated with the Van Hove singularities, were observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hummel, R.E., Xi, W. and Hagmann, D.R., J. Electrochem. Soc., 137, 3583 (1990).Google Scholar
2. Tatarkiewicz, J., Phys. Stat. Sol.(b), 153, 11 (1989).Google Scholar
3. Fried, M., Lohner, T., Nijs, J.M.M. De, Silfhout, A. Van, Hanekamp, L.J., Khanh, N.Q., Laczik, Z. and Gyulai, J., Mater. Sci. Eng., B2, 131 (1989).CrossRefGoogle Scholar
4. Lee, J., Lee, C. and Ernst, S., J. Vac. Sci. Technol. B6, 1533 (1988).CrossRefGoogle Scholar
5. Burns, T.M., Chongsawangvirod, S., Andrwes, J.W., Irene, E.A., McGuire, G. and Chevacharoeukul, S., J. Vac. Sci. Technol. B9, 41 (1991).CrossRefGoogle Scholar
6. Wurm, S., Alpern, P., Savignac, D. and Kakoschke, R., Appl. Phys., A47, 147 (1988).Google Scholar
7. Swart, P.L., Lacquet, B.M. and Thavar, R., Appl. Surf. Sci., 50, 330 (1991).Google Scholar
8. Aizenberg, G.E., Swart, P.L. and Lacquet, B.M., Mat. Res. Soc. Symp. Proc., 268, 349 (1992)Google Scholar
9. Aizenberg, G.E., Swart, P.L. and Lacquet, B.M., J. Electron. Mater., 21, 1033 (1992).Google Scholar
10. Hubler, G.K., Malmberg, P.R., Waddell, C.N., Spitzer, W.G. and Fredrickson, J.E., Rad. Eff., 60, 35 (1982).Google Scholar
11. Waddell, C.N., Spitzer, W.G., Hubler, G.K. and Fredrickson, J.E., J. Appl. Phys., 53, 5851 (1992).CrossRefGoogle Scholar
12. Liou, L.L., Spitzer, W.G., Zavada, J.M. and Jenkinson, H.A., J. Appl. Phys., 59, 1936 (1986).Google Scholar
13. Hubler, G.K., Malmberg, P.R. and Smith, T.P., J. Appl. Phys., 50, 7147 (1979).CrossRefGoogle Scholar
14. Kessler, F.R., Barkow, U., Nies, R. and Unzner, N., Phys. Stat. Sol. (a), 105, 627 (1988).Google Scholar
15. Barta, E. and Lux, G., J. Phys. D: Appl. Phys., 16, 1543 (1983).Google Scholar
16. Swart, P.L. and Lacquet, B.M., J. Appl. Phys., 70, 1069 (1991).Google Scholar
17. Aizenberg, G.E., Swart, P.L. and Lacquet, B.M., S.A. J. of Phys., 16, 131 (1993).Google Scholar
18. Swart, P.L. and Lacquet, B.M., J. Electron. Mat., 19, 1383 (1990).Google Scholar
19. Phillips, J.C., Sol. Stat. Phys., 18, 55 (1966).Google Scholar
20. Wilson, R.G., Betts, D.A., Sadana, D.K., Zavada, J. M. and Hunsberger, R.G., J. Appl. Phys., 57, 5006 (1985).Google Scholar
21. Ziegler, J.F., Biersack, J.P. and Littmark, U., The stopping and range of ions in solids (Pergamon Press Ltd, New York)Google Scholar
22. Snyman, H.C. and Neethling, J.H., Rad. Eff., 60, 147 (1982).Google Scholar
23. Palik, E.D., Handbook of Optical Constants of Solids (Academic Press, Inc., Orlando, 1985).Google Scholar
24. Lacquet, B.M. and Swart, P.L., Mat. Res. Soc. Symp. Proc., 147, 253 (1989).Google Scholar