Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T01:45:10.779Z Has data issue: false hasContentIssue false

The information content of lattice resolved high angle tilt series of nanoparticles

Published online by Cambridge University Press:  01 February 2011

Xiaojing Xu
Affiliation:
[email protected], University of Sheffield, Engineering Materials, Mappin Street, Sheffield, N/A, United Kingdom, +44 114 2225512
Zineb Saghi
Affiliation:
[email protected], University of Sheffield, Engineering Materials, Mappin Street, Sheffield, N/A, United Kingdom
Beverley Inkson
Affiliation:
[email protected], University of Sheffield, Engineering Materials, Mappin Street, Sheffield, N/A, United Kingdom
Günter Möbus
Affiliation:
[email protected], University of Sheffield, Engineering Materials, Mappin Street, Sheffield, N/A, United Kingdom
Get access

Abstract

Gold nanoparticles are observed by high-resolution electron microscopy over a high tilt range equivalent to tomographic data acquisition. It is demonstrated how the lattice resolved contrast can be used to identify the internal multiply-twinned microstructure, as the large number of viewing direction allows to image each of the grain-to-grain displacement vectors in at least one image. Furthermore application of tomographic reconstruction is shown after binarisation of the original images to estimate the external shape from the support of the particle in the case of convex objects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yacaman, M.J., Ascendio, J.A., Liu, H.B., -Torresday, J.G., J.Vac. Sci. Technol. B 19, 1091 (2001).10.1116/1.1387089Google Scholar
2. Ascencio, J.A., Gutierrez-Wing, C., Espinosa, M.E., Marin, M., Tehuacanero, S., Zorrilla, C., Jose-Yacaman, M., Surface Science 396, 349 1998).10.1016/S0039-6028(97)00689-4Google Scholar
3. Marks, L.D., Phil.Mag. A 49, 81 1984).10.1080/01418618408233431Google Scholar
4. Daniel, M-C., Astruc, D., Chem. Rev. 104, 293 2004).10.1021/cr030698+Google Scholar
5. Cleveland, C.L., Landman, U., J. Chem. Phys 94, 7376 1991).10.1063/1.460169Google Scholar
6. Koga, K., Sugawara, K., Surface Science 529, 23 2003).10.1016/S0039-6028(03)00300-5Google Scholar
7. Koga, K., Ikeshoji, T., Sugawara, K., Phys. Rev. Lett., 92, 115507–1 2004).10.1103/PhysRevLett.92.115507Google Scholar
8. McBride, J.R., Kippeny, T.C., Pennycook, S.J., Rosenthal, S.J., Nanoletters 4, 1279 2004).Google Scholar
9. J, Frank (Ed.) Electron Tomography, 2nd ed., Plenum Press, New York, 1997.Google Scholar
10. Mubus, G., Inkson, B.J., Materials Today, 10 (12), 18 2007).Google Scholar
11. Möbus, G., Inkson, B.J., Appl. Phy. Lett. 79, 1369 2001).10.1063/1.1400080Google Scholar
12. Möbus, G., Inkson, B.J., Ultramicroscopy 96, 433 2003).10.1016/S0304-3991(03)00106-2Google Scholar
13. Midgley, P.A., Weyland, M., Ultramicroscopy 96, 413 2003).10.1016/S0304-3991(03)00105-0Google Scholar
14. Gardner, R. J., Geometric Tomography. Plenum Press, New York, 1995.Google Scholar
15. Saghi, Z., Xu, X.J., Möbus, G., Microscopy, J., submitted.Google Scholar
16. Möbus, G., Inkson, B.J., Ross, I.M., Morrison, R., Micro. & Microa., 10(Suppl 2), 1196 2004).Google Scholar
17. Kremer, J.R., Mastronarde, D.N., McIntosh, J.R., J. Struct. Biol. 116, 71 1996).10.1006/jsbi.1996.0013Google Scholar
18. Xu, X.J., Saghi, Z., Gay, R., Mübus, G., Nanotechnology, 18, 225501 2007).10.1088/0957-4484/18/22/225501Google Scholar
19. Xu, X.J., Saghi, Z., Yang, G., Peng, Y., Inkson, B., Gay, R., Möbus, G., Mater. Res. Soc. Symp. Proc., 928E 0982-KK02-04, 2007).Google Scholar