Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T07:46:58.169Z Has data issue: false hasContentIssue false

Influence of TiO2 on the Pore Structure and Texture of SiO2-PDMS Hybrid Materials

Published online by Cambridge University Press:  01 February 2011

Lucía Téllez
Affiliation:
Dpt. Ingeniería Metalúrgica. ESIQIE-Instituto Politécnico Nacional. Zacatenco, 07738, México D.F., México.
Juan Rubio
Affiliation:
Instituto de Cerámica y Vidrio. C.S.I.C. Campus de Cantoblanco, 28049. Madrid. Spain.
Miguel A. Valenzuela
Affiliation:
Lab. Catálisis y Materiales. ESIQIE-Instituto Politécnico Nacional. Zacatenco, 07738, México D.F., México.
Fausto Rubio
Affiliation:
Instituto de Cerámica y Vidrio. C.S.I.C. Campus de Cantoblanco, 28049. Madrid. Spain.
Ernesto Morales
Affiliation:
Instituto de Cerámica y Vidrio. C.S.I.C. Campus de Cantoblanco, 28049. Madrid. Spain.
José L. Oteo
Affiliation:
Instituto de Cerámica y Vidrio. C.S.I.C. Campus de Cantoblanco, 28049. Madrid. Spain.
Get access

Abstract

Porous SiO2-PDMS-TiO2 hybrid materials have been prepared by the Sol-Gel method using tetraethoxysilane (TEOS), silanol terminated-Polydimethylsiloxane (PDMS) and tetrabuthylortotitanate (TBT) as precursors. These materials were characterized by means of nitrogen adsorption, mercury porosimetry and helium picnometry. It was found that the meso and microporosity are predominant in all samples. The influence of the TBT concentration in the final pore structure and texture of SiO2-PDMS-TiO2 hybrid materials was studied. Results showed that increasing the TBT concentration decreases the pore volume of micropores, mesopores and macropores. On the other hand the specific surface areas of meso and macropores decreases with increasing TBT content, but micropore areas increase with TBT. These results are assigned to the formation of ultramicropores when TBT is added. In addition, surface roughness is found to increase with TBT concentration which is attributed to the formation of hydrous titanium oxide based nanoparticles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Huang, J., Mackenzie, J.D., Mat. Res. Soc. Symp. Proc. 271 (1992) 681.Google Scholar
[2] Floch, G.H., Belleville, P.F., Priotton, J.J., Pergon, P.M., Dojonneau, C.S., Guerain, J., Am. Ceram. Soc. Bull. 1, 60 (1995).Google Scholar
[3] Wilkes, G.L., Orler, B., Huang, H.H., Polym. Prep. 26, 300 (1985).Google Scholar
[4] Mackenzie, J.D., Chung, Y.J., Hu, Y., J. Non-Cryst. Solids 147&148, 271 (1992).Google Scholar
[5] Chung, Y.J., Ting, S.J., Mackenzie, J.D., Mater. Res. Soc. Symp. Proc. 180 (1990) 981.Google Scholar
[6] Hu, Y., Chung, Y.J., Mackenzie, J.D., J. Mater. Sci. 28, 6549 (1993).Google Scholar
[7] Hoshino, Y., Mackenzie, J.D., J. Sol-Gel Sci. Technol. 5, 83 (1995).Google Scholar
[8] Parkust, C.S., Doyle, W.F., Silverman, L.A., Singh, S., Andersen, M.P., McClurg, D., Wnek, G.E., Uhlman, D.R., Mat. Res. Soc. Symp. Proc. 73 (1986) 769.Google Scholar
[9] Motakef, S., Suratwala, T., Roncone, R.L., Bulton, J.M., Teowee, G., Uhlmann, D.R., J. Non-Cryst. Solids 178, 37 (1994).Google Scholar
[10] Babonneau, F., Polyhedron 13, 1123 (1994).Google Scholar
[11] Rubio, F., Rubio, J., Oteo, J.L., J. Sol-Gel Sci. Technol. 18, 105 (2000).Google Scholar
[12] Rigby, S.P., J. Colloid Interface Sci. 224, 382 (2000).Google Scholar
[13] Allen, T., “Particle Size Measurement”, Chapman and Hall, London, 1981.Google Scholar
[14] Gregg, S.J., Sing, K.S.W., “Adsorption Surface Area and Porosity”, Academic Press, London, 1982.Google Scholar
[15] Carrot, P.J.M., Sing, K.S.W., “Characterization of Porous Solids” II, vol. 39, 1988, p. 77 Google Scholar
[16] Dubinin, M.M., Radusckevich, L.W., Proc. Acad. Sci. 55, 331 (1947).Google Scholar
[17] Dubinin, M.M., Stoeckli, H.F., J. Colloid and Interface Sci. 75, 34 (1980).Google Scholar