Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T07:37:43.480Z Has data issue: false hasContentIssue false

Influence of the Dispersion of the Size of the Si Nanocrystals on their Emission Spectra

Published online by Cambridge University Press:  28 February 2011

J. B. Khurgin
Affiliation:
The Johns Hopkins University, Department of ECE, Baltimore MD.
E. W. Forsythe
Affiliation:
Structured Materials Incorporated, Piscataway, NJ.
S. I. Kim
Affiliation:
Structured Materials Incorporated, Piscataway, NJ.
B. S. Sywe
Affiliation:
Rutgers University, Department of ECE, Piscataway, NJ
B. A. Khan
Affiliation:
Philips Laboratories, Briarcliff Manor, NY
G. S. Tompa
Affiliation:
Structured Materials Incorporated, Piscataway, NJ.
Get access

Abstract

A systematic study of the PL spectra of Si quantum nanocrystals in the SiO2 matrix has been performed. The results have been fitted to a quantum-confinement model that includes the nanocrystal size dispersion rather than a specific size of the nanocrystal. This serves as a strong confirmation of the confinement-induced nature of the PL. It has been shown that if the dispersion is taken into account, the position of the emission peak as well as the PL width can always be correlated with the average size of the nanocrystal.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Canham, L. T., Appl. Phys. Lett. 57,1046 (1990)Google Scholar
2 Cullis, A. G. and Canham, L. T., Nature, 353, 335 (1991)Google Scholar
3 Kim, S. I., Hart, T., Khan, B., Tompa, G. S., Lu, Y., Sun, G., and Khurgin, J. B., Mat. Res. Soc. Symp. Proceedings, 326, 591, (1994)Google Scholar
4 Di Maria, D. J., Kittey, J. R., Padulis, E. J., J. Appl. Phys. 56, 401 (1984)Google Scholar
5 Shcheglov, K. V., Yang, C. M., Vahala, K. J. and Atwater, H. A., Appl. Phys. Lett.Google Scholar
6 Tompa, G. S., BMDO contract No DASG60-93-C-0141, Report No 4.Google Scholar
7 Lehmann, V. and Gosele, U., Appl. Phys. Lett. 58, 856 (1991)Google Scholar
8 Hybertsen, M. C.,Mat. Res. Soc. Symp. Proceedings, 256, 179 (1992)Google Scholar
9 Sui, S., Leong, P. P., Herman, I. P., and Temkin, H., Appl. Phys. Lett. 60, 2086 (1992)Google Scholar
10 Kanemitsu, Y., Uto, H., Matsumoto, Y., and Mimura, H., Phys. Rev. B48, 2827 (1993)Google Scholar
11 Prokes, S. M. and Glembocki, O. J., Phys. Rev. B49, 2238 (1994)Google Scholar
12 Skuja, L. N. and Silin, A. R., Phys. Stat. Sol. A56, K11 (1979)Google Scholar
13 Prokes, S. M., Glembocki, O. J., and Bermudez, V. M., Phys. Rev. B45, 13778 (1992)Google Scholar
14 Fauchet, P. M., Tsybeskov, L., and Peng, C., Proc. of SPIE, 2141, 155 (1994)Google Scholar
15 Kanemitsu, Y., J. Phys. Soc. Jpn., 63, Suppl B, 107, (1994)Google Scholar
16 Sywe, B. S., Gorla, C. R., Lu, Y., Forsythe, E. W., Khan, B. A., Tompa, G.S., Khurgin, J. B., Kim, M. J., and Lee, H. W., Mat. Res. Soc. Symp. Proceedings, (1994)Google Scholar