Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T09:55:31.477Z Has data issue: false hasContentIssue false

Influence of the Density of Oxide Particles on the Diffusional Behavior of Oxygen in Internally Oxidized, Silver-Based Alloys+

Published online by Cambridge University Press:  22 February 2011

F. H. Sanchez
Affiliation:
Departamento de Fisica, Universidad Nacional de La Plata, 1900 La Plata Argentina.
R. C. Mercader
Affiliation:
Physics Department, The University of Connecticut, Storrs, CT 06268, U.S.A.
A. F. Pasquevich
Affiliation:
Physics Department, The University of Connecticut, Storrs, CT 06268, U.S.A.
A. G. Bibiloni
Affiliation:
Physics Department, The University of Connecticut, Storrs, CT 06268, U.S.A.
A. Lopezgarcia
Affiliation:
Physics Department, The University of Connecticut, Storrs, CT 06268, U.S.A.
Get access

Abstract

This paper presents strong evidence for the influence of the density of oxide particles on the internal oxidation kinetics of silver based alloys. Measurements performed by Mbssbauer Spectroscopy, on 1 at% Sn in Ag alloys oxidized at temperatures between 523 and 823K, clearly indicate that the oxidation kinetics are described by a power law of the time with an exponent close to the unity for a high density of oxide particles (between 0.3 and 1.0×10−2 oxide particles per alloy atom). For low densities (<10−4 oxide particles per alloy atom), the exponent is close to 0.5). Previous kinetics measurements in AgIn alloys are shown to be in general agreement with this rule. These results can be interpreted on the basis of the existence of strain fields around the oxide particles, which produce a network of channels for easy oxygen migration when the density of oxide particles is high enough.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Wagner, C., J.Electrochem.Soc. 63(1959)777.Google Scholar
(2) Ehrlich, A.C., J.Mat.Sci. 9(1974) 1064 Google Scholar
(3) Ashby, M.F. and Smith, G.C., J.Inst.Metals 91(1963)182.Google Scholar
(4) Desimoni, J., Bibiloni, A.G., Mendoza-Zelis, L., Pasquevich, A.F., Sanchez, F.H., and Lopez-Garcia, A., Phys.Rev. B28(1983)5739.CrossRefGoogle Scholar
(5) Pasquevich, A.F., Sanchez, F.H., Bibiloni, A.G., Massolo, C.P., and Lopez-Garcia, A., in Nuclear and Electron Resonance Spectroscopies Applied to Materials Science, edited by Kaufmann, E.N. and Shenoy, G.K., (NorthHolland, Amsterdam, 1981), p.435.Google Scholar
(6) Pasquevich, A.F., Bibiloni, A.G., Massolo, C.P., Sanchez, F.H., and Lopez-Garcia, A., Phys.Lett. 82A((1981)34.CrossRefGoogle Scholar
(7) Pasquevich, A.F., Sanchez, F.H., Bibiloni, A.G., Desimoni, J., and Lopez-Garcia, A., Phys Rev. B27(1983)963.CrossRefGoogle Scholar
(8) Sanchez, F.H., Mercader, R.C., Pasquevich, A.F., Bibiloni, A.G. and Lopez-Garcia, A., Hyp.Interactions 20(1984)295.CrossRefGoogle Scholar
(9) Sanchez, F.H., Mercader, R.C., Pasquevich, A.F., Bibiloni, A.G. and Lopez-Garcia, A., to be published as a short note in Phys.Stat.Sol.(a)Google Scholar
(10) Desimoni, J., private communication.Google Scholar
(11) 1984 annual book of ASTM standards. Sect.2, Non Ferrous Metal Products. Vol. 02.04, p B413. American Society for Testing Materials, 1984.Google Scholar
(12) Huffman, G.P. and Podgurski, H.H., Acta Metall. 21(1973)449.Google Scholar
(13) Bernardini, J., Gas, P., Hondros, E.D., and Seah, M.P., Proc.Roy.Soc. London, A379(1982)159.Google Scholar
(14) Askill, John. Tracer Diffusion Data for Metals, Alloys and Simple Oxides, IFI/Plenum. New York-Washington-London. 1970.Google Scholar
(15) Gas, P. and Bernardini, J., Scripta Metallurgica 12(1978)367.CrossRefGoogle Scholar
(16) Eichenauer, W. and Muller, G., Z.Metallkd. 53(1962)321; 53(1962)700.Google Scholar