Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T08:48:11.182Z Has data issue: false hasContentIssue false

Influence of Structure on the Formation of Dislocation in LBO Crystal

Published online by Cambridge University Press:  10 February 2011

X. B. Hu
Affiliation:
National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, P. R. China
S. S. Jiang
Affiliation:
National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, P. R. China
X. R. Huang
Affiliation:
National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, P. R. China
W. Zeng
Affiliation:
National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, P. R. China
W. J. Liu
Affiliation:
National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, P. R. China
Y. D. Zheng
Affiliation:
National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, P. R. China
Q. L. Zhao
Affiliation:
Fujian Institute of Research on the Structure of Matter, Academia Sinica, Fuzhou 350002, P. R. China
C. T. Chen
Affiliation:
Fujian Institute of Research on the Structure of Matter, Academia Sinica, Fuzhou 350002, P. R. China
Get access

Abstract

Dislocations in LiB3O5(LBO) single crystal were investigated by white-beam synchrotron radiation topography(WBSRT). The WBSRT revealed that the grown-in dislocations are mainly pure screw or edge types with the Burgers vectors in the low index directions on (010) lattice plane. Based on the structure analysis, the formation cause of dislocations can be interpreted in terms of the loose packing of B-O rings and the low density of Li+ on (010) lattice plane.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kugel, V. E., Roseuman, G., Angert, N., Yaschin, E., Roth, M., J. Appl. Phys. 76, 4823(1994).Google Scholar
2. Yen, B. M., Liu, D. H., Bai, G. R., J. Appl. Phys. 76, 4823(1994).Google Scholar
3. Zhu, Y. Y., Zhu, S. N., Hong, J. F., Ming, N. B., Appl. Phys. Lett. 65, 558(1994).Google Scholar
4. Chen, C. T., Wu, Y. H., J. Opt. Soc. Am. B 6, 616(1989).Google Scholar
5. Mao, H. W., Wu, F. C., Wu, B. C. and Chen, C. T., Appl. Phys. Lett.Google Scholar
6. Zhao, Q. L., Huang, Y. S., J. Matter. Sci. Lett. 12, 932(1993).Google Scholar
7. Zhao, Q. L., Huang, Y. S., Acta Physica Sinica, 41, 272, (1992).Google Scholar
8. Tanner, B. K. and Bowen, D. K., Characterization of Crystal Growth Defects by X-Ray Methods(Plenum Press, New York and London,1979) P401 Google Scholar
9. Huang, X. R., Jiang, S. S., Zeng, W., Hu, X. B. and Liu, W. J., Appl.’ Phys. Lett., 66, 2649(1995).Google Scholar
10. Hu, Z. W., Huang, P. Q. and Jiang, S. S., J. App. Phys., 74, 7124(1993).Google Scholar
11. Tanner, B. K., X-Ray Diffraction7 Topography(Pergamen Press, Oxford, 1976), P56.Google Scholar
12. Konig, H. and Hoppe, A., Z. Anorg. Allg. Chem., 439, 71(1978).Google Scholar
13. Zhao, Q. L., J. Chin. Struct. Chem., 12, 297(1993).Google Scholar
14. Zhao, S. Q., Zhang, H. W., Huang, C. E., J. Chin. Synthetic Crystals, 18,9(1989).Google Scholar