Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:24:10.930Z Has data issue: false hasContentIssue false

Influence of Structure and Chemistry on Piezoelectric Properties of Pzt in a Mems Power Generation Application

Published online by Cambridge University Press:  11 February 2011

L.M.R. Eakins
Affiliation:
Mechanical and Materials Engineering, Washington State University, Pullman WA 99164–2920
D.E. Eakins
Affiliation:
Mechanical and Materials Engineering, Washington State University, Pullman WA 99164–2920
C.D. Richards
Affiliation:
Mechanical and Materials Engineering, Washington State University, Pullman WA 99164–2920
M.G. Norton
Affiliation:
Mechanical and Materials Engineering, Washington State University, Pullman WA 99164–2920
R.F. Richards
Affiliation:
Mechanical and Materials Engineering, Washington State University, Pullman WA 99164–2920
D.F. Bahr
Affiliation:
Mechanical and Materials Engineering, Washington State University, Pullman WA 99164–2920
Get access

Abstract

PZT films between 1 and 3 μm thick were grown using solution deposition techniques to study the effects of crystal structure, orientation, chemistry and PZT/PZT crystallization interfaces on the piezoelectric output of these films. By varying the chemistry of the film from Zr-rich to Ti-rich the film orientation increased towards {h00}. PZT with 60 wt% Ti exhibited tetragonality and produced greater electrical output at a given strain than the rhombohedral films with concentrations less than 50 wt% Ti. Multiple steps of solution deposition left identifiable PZT/PZT interfaces within the film. TEM, FESEM, and Auger spectroscopy were used to characterize these interfaces, which form upon crystallization of the amorphous PZT film. Internal PZT interfaces are associated with both structural defects (voids) as well as chemical variations such as Pb deficiencies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lee, W.I., Lee, J.K., Mat. Res. Bull. 30, 1188 (1995).Google Scholar
2. Ea-Kim, B., Varniere, F., Hugon, M.C., Agius, B., Bisaro, R., and Olivier, J., Mater. Res. Soc. Symp. Proc., 433, 163 (1996).Google Scholar
3. Fox, G.R, Summerfelt, S., Mat. Res. Soc. Symp. Proc., 721, J6.1.1 (2002).Google Scholar
4. Taylor, D.V., Damjanovic, D., App. Phys. Lett. 76, 1615 (2000).Google Scholar
5. Chen, S., Chen, I., J. Am. Ceram. Soc., 81, 97 (1998).Google Scholar
6. Liu, Y., Phule, P.P., J. Am. Cer. Soc., 80, 2410 (1997).Google Scholar
7. Fu, X., Li, J., Song, Z., Lin, C., J. Crystal Growth 220, 86 (2000).Google Scholar
8. Al-Shareef, H.N., Kingon, A.I, Chen, X., Bellur, K.R., J. Mater. Res., 9, 2968 (1994).Google Scholar
9. Song, Z., Lin, C., App. Sur. Sci. 158, 21 (2000)Google Scholar
10. Tuttle, B.A., Headley, T.J., Al-Shareef, H.N., Voigt, J.A., Rodriguez, M., Michael, J., Warren, W.L., J. Mater. Res. 11, 2309 (1996).Google Scholar
11. Budd, K.D., Dey, S.K., Payne, D.A., Brit. Ceramic Proc., 36, 107 (1985).Google Scholar
12. Hall, J.D., Apperson, N.E., Crozier, B.T., Xu, C., Richards, R.F., Bahr, D.F., Richards, C.D., Rev. Sci. Instr., 73, 2067 (2002).Google Scholar
13. Olson, B.W., Skinner, J.L., Richards, C.D., Richards, R.F., Bahr, D.F., Mater. Res. Soc. Symp. Proc., 718, D10.25. (2002).Google Scholar
14. Abe, K., Tomita, H., Toyoda, H., Imai, M., Yokote, Y., Jpn. J. Appl. Phys. 30, 9B 2152 (1991).Google Scholar
15. Es-Souni, M., Piorra, A., Mat. Res. Bull. 36, 2563 (2001).Google Scholar
16. Tuttle, B.A., Headley, T.J., Bunker, B.C., Schwartz, R.W., Zender, T.J., Hernandez, C.L., Goodnow, D.C., Tissot, R.J., Michael, J., J. Mater. Res. 7, 1876 (1992).Google Scholar