Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T14:21:19.570Z Has data issue: false hasContentIssue false

The Influence of Short Range Order on the Energetics of Ni-Rich Nial Alloys

Published online by Cambridge University Press:  22 February 2011

Yang Wang
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
G. M. Stocks
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
D.M.C. Nicholson
Affiliation:
Computing Applications Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
W. A. Shelton
Affiliation:
Engineering Physics and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
E. L. Hines
Affiliation:
Department of Physics, Florida Atlantic University, Boca Raton, FL 33431
Z. Szotek
Affiliation:
SERC, Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, U.K.
W. M. Temmerman
Affiliation:
SERC, Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, U.K.
Get access

Abstract

Total energy calculations for Ni-rich ß′-phase NiAl have been performed using the large system multiple scattering (LSMS) method. The large samples used to model the alloys involved up to 128 atoms per cell, and were constructed to have the experimental short range order (SRO) parameters. Both short range ordering and charge transfer effects are automatically taken into account in the calculation. The calculated formation energies of both stoichiometric and non-stoichiometric compounds are in excellent agreement with experiment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Noebe, R. D., Bowman, R. R., and Nathal, M. V., Int. Met. Rev. 38, 193 (1993).Google Scholar
[2] Fu, C. L., Ye, Y.-Y., Yoo, M. H., and Ho, K. M., Phys. Rev. B 48, 6712 (1993).Google Scholar
[3] Moruzzi, M. L., Williams, A. R., and Janak, J. F., Phys. Rev. B 10, 4856 (1974).Google Scholar
[4] Eibler, R. and Neckel, A., J. Phys. F: Metal Phys. 10, 2179 (1980).Google Scholar
[5] Lui, S.-C., Davenport, J. W., Plummer, E. W., Zehner, D. M., and Fernando, G. W., Phys. Rev. B 42, 1582 (1990).Google Scholar
[6] Kim, Kwang Joo, Harmon, B. N., and Lynch, D. W., Phys. Rev. B 43, 1948 (1991).Google Scholar
[7] Lu, Z. W., Wei, S.-H., and Zunger, A., Acta Metall. Mater. 40, 2155 (1992).Google Scholar
[8] Pasturel, A., Colinet, C., Paxton, A. T., and van Schilfgaarde, M., J. Phys.: Condens. Matter 4, 945 (1992).Google Scholar
[9] Schultz, Peter A. and Davenport, James W., J. Alloys and Compounds 197, 229 (1993).Google Scholar
[10] Mehl, M. J., and Singh, D. J., and Papaconstantopoulos, D. A., Mater. Sci. Engi. A170, 49 (1993).Google Scholar
[11] Stocks, G. M., Shelton, W. A., Nicholson, D. M., Pinski, F. J., Ginatempo, B., Barbieri, A., Györffy, B. L., Johnson, D. D., Staunton, J. B., Turchi, P. E. A., and Sluiter, M., in Ordered Intermetallics-Physical Metallurgy and Mechanical Behaviour, edited by Liu, C. T., Cahn, R. W., and Sauthoff, G., (NATO-ASI, Kluwer, Boston, 1992), E213, p. 15.Google Scholar
[12] Stocks, G. M., Temmerman, W. M., and Györffy, B. L., Phys. Rev. Letters 41, 339 (1978).Google Scholar
[13] Turchi, P. E. A., Stocks, G. M., Butler, W. H., Nicholson, D. M., and Gonis, A., Phys. Rev. B 37, 5982 (1988).Google Scholar
[14] Hohenberg, P. and Kohn, W., Phys. Rev. B 136, 864 (1964).Google Scholar
[15] Kohn, W. and Sham, L. J., Phys. Rev. A 140, 1133 (1965).Google Scholar
[16] Nicholson, D. M. C., Stocks, G. M., Wang, Y., and Shelton, W. A., Szotek, Z., and Temmerman, W. M., Phys. Rev. B 50, 14686 (1994).Google Scholar
[17] Faulkner, J. S. and Stocks, G. M., Phys. Rev. B 21, 3222 (1980).Google Scholar
[18] Wang, Yang, Stocks, G. M., and Faulkner, J. S., Phys. Rev. B 49, 5028 (1994).Google Scholar
[19] Stocks, G. M., Nicholson, D. M. C., Wang, Y., Shelton, W. A., Szotek, Z., and Temmerman, W. M., in Proceedings of the Conference on High Performance Computing ’94, edited by Tentner, Andrian, (The Society for Computer Simulation, San Diego, CA, 1994), p. 150.Google Scholar
[20] Abrikosov, I. A., Vekilov, Yu. H., Korzhavyi, P. A., Ruban, A. V., and Shilkrot, L. E., Solid State Communication 83, 867 (1992).Google Scholar
[21] Johnson, D. D. and Pinski, F. J., Phys. Rev. B 48, 11553 (1993).Google Scholar
[22] Georgopoulos, P. and Cohen, J. B., Acta Metallurgica 29, 1535 (1981).Google Scholar
[23] Kubaschewski, O. and Heymer, G., Trans. Frarday Soc. 56, 473 (1960).Google Scholar
[24] Hultgren, R., Desai, P. D., Hawkins, D. T., Gleiser, M., and Kelley, K. K., Selected Values of Thermodynamics Properties of Binary Alloys, (American Society of Metals, Metals Park, Ohio, 1973), p. 192.Google Scholar
[25] Henig, Ernst-Theo and Lukas, Hans Leo, Z. Metallkde. 66, 98 (1975).Google Scholar
[26] Kubaschewski, O., Trans. Faraday Soc. 54, 814 (1958).Google Scholar
[27] Neumann, Joachim P., Chang, Y. Austin, and Ipser, Herbert, Scripta Metallurgica 10, 917 (1976).Google Scholar