Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-20T00:33:39.923Z Has data issue: false hasContentIssue false

The Influence of Quantizing Magnetic Field on The Magnetic Susceptibilities in Ultra Thin Films of Dilute Magnetic Materials

Published online by Cambridge University Press:  03 September 2012

Kamakhya P Ghatak
Affiliation:
Department of Electronics and Tele-Communication Engineering, Faculty of Engineering and Technology, Jadavpur University, Calcutta 700032, INDIA.
S. N. Biswas
Affiliation:
Institut fur Halbleitertechnik, RWTH, 5100 Aachen, WSH. Sommerfeld Strasse, GERMANY.
Get access

Abstract

In this paper we have studied the dia and paramagnetic susceptibilities of the holes in ultrathin films of dilute magnetic materials in the presence of a quantizing magnetic field and compared the same with that of the bulk specimens under magnetic quantization for the purpose of relative comparison. It is found, taking Hg1−xMnxTe and Cd1−xMnxSe as examples, that both the susceptibilities increase with decreasing film thickness and increasing surface concentration in oscillatory Manners. The numerical values of the susceptibilities in ultrathin films of dilute magnetic materials are greater than that of the bulk and the theoretical analysis is in agreement with the experimental data as reported elsewhere.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dreifus, D. L., Koblous, R. M., Harris, K. A., Bicknell, R. N., Giles, N. C. and Schetzina, J. F., Appl. Phys. Letts. 51, 931 (1987).Google Scholar
2. Dreifus, D. L., Kolbus, R. M., Tassitino, J. R., Harper, R. L., Bickness, R. N. and Schetzina, J. F., J. Vac. Sci. Tech. 6A, 2722 (1988).Google Scholar
3. Bicknell, R. N., Giles-Taylor, N. G., Schetzina, J. F., Anderson, N. G. and Laidig, W. D., J. Vac. Sci. Tech. 4, 2126 (1986).Google Scholar
4. Bicknell, R. N., Giles, N. C., Schetzina, J. F., Anderson, N. G. and Laidig, W. D., Appl. Phys. Letts. 46, 238 (1985).Google Scholar
5. Becla, P., J. Vac. Sci. Tech. 6A, 2725 (1988).Google Scholar
6. Bicknell, R. N., Gailes, N. G. and Schetzina, J. F., Appl. Phys. Letts 49, 1095 (1986).Google Scholar
7. Bicknell, R. N., Giles, N. C., Schetzina, J. F. and Hitzman, C., J. Vac. Sci. Tech. 5A, 3059 (1987).Google Scholar
8. Harper, R. L., Hwang, S., Giles, N. C., Bickness, R. N., Schetzina, J. F., Lee, Y. R. and Ramdas, A. K., J. Vac. Sci. Tech. 6A, 2627 (1988).Google Scholar
9. Dreifas, D. L. and Kolbous, R. M., Appl. Phys. Letts. 53, 1279 (1988).Google Scholar
10. Furdyna, J. K., J. Appl. Phys. 64, 29 (1988).Google Scholar
11. Elfros, A. L. and Kakanov, B., J. Exp. Theo. Phys. 96, 218 (1992).Google Scholar