Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T02:34:53.510Z Has data issue: false hasContentIssue false

The Influence of Processing Parameters on Photoluminescent Properties of Ba2ZnS3:Mn Phosphors by Double-Crucible Method

Published online by Cambridge University Press:  15 March 2011

Yu-Feng Lin
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 701 Taiwan, ROC
Yen-Hwei Chang
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 701 Taiwan, ROC
Bin-Siang Tsai
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 701 Taiwan, ROC
Get access

Abstract

Red light emitting of Mn2+ doped Ba2ZnS3 phosphor powders have been synthesized by double-crucible method at different thermal treatments. XRD results indicate that the raw materials are completely sulfurized above 950°C, and the Ba2ZnS3: Mn2+ powders don't change its orthorhombic crystal structure with increasing doping concentration from 0 to 0.8 mol%. The photoluminescence of Ba2ZnS3: Mn2+ powders fulfilled the most efficient emission at the excitation wavelength λex=358 nm and showed the red emission light with peak wavelength λem=627nm at the doping concentration of Mn2+ ion between 0.2 and 0.8 mol%. The high-luminance red emission results from the 4T1 (4G)—6A1 (6S) transition in the Mn2+ ion. Ba2ZnS3: Mn2+ phosphors synthesized by double-crucible method have broad emission spectra (550nm∼750nm) with FWHM (full width at half maximum broadband) about 66nm. In our research, the Ba2ZnS3 doped with 0.4 mol% Mn2+ has the highest luminescent intensity as thermal treatment at 950°C for 16 hours and the CIE coordinate is x=0.66, y=0.33.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Qi, Lai, Lee, Burtrand I., Kim, Jong M., Jang, Jae E. and Choe, Jae Y., J. Lumin. 104 (2003), pp. 261266.Google Scholar
[2] Park, W., King, J. S., Neff, C. W., Liddell, C. and Summers, C. J., Phys. Stat. Sol. (b) 229 (2002), pp. 949960.Google Scholar
[3] Greeff, A. P. and Swart, H. C., Surf. Interface Anal. 34 (2002), pp. 593596.Google Scholar
[4] O'Brien, Ted A., Rack, Philip D., Holloway, Paul H. and Zerner, Michael C., J. Lumin, 78 (1998), pp. 245257.Google Scholar
[5] Yamashita, Nobuhiko and Asano, Sumitada, J. Phys. Soc. Jpn. 56 (1987), pp. 352358.Google Scholar
[6] Rao, R. P., J. Mater. Sci. 21 (1986), pp. 33573386; J. Mater. Sci. Letters 2 (1983), pp. 106-110.Google Scholar
[7] Xiaolin, Sun, Guangyan, Hong, Xinyong, Dong, Dong, Xiao, Guilan, Zhang, Guoqing, Tang and Wenju, Chen, J. Phys. Chem. Solids 62 (2001), pp. 807810.Google Scholar
[8] Tamura, Yasuaki, Jpn. J. Appl. Phys. 33 (1994), pp. 46404646.Google Scholar
[9] Yamashita, Nobuhiko, Fukumoto, Shigeru, Ibuki, Sumiaki and Ohnishi, Hideomi, Jpn. J. Appl. Phys. 32 (1993), pp. 31353139.Google Scholar
[10] Summers, C. J., Wagner, B. K., Tong, W., Park, W., Chaichimansour, M. and Xin, Y. B., J. Crystal Growth 214–215 (2000), pp. 918925.Google Scholar
[11] Hüttl, B., Velthaus, K. O., Troppenz, U., Herrmann, R. and Mauch, R. H., J. Crystal Growth 159 (1996), pp. 943946.Google Scholar
[12] Yamashita, Nobuhiko, Ohira, Takaharu, Mizuochi, Hitoshi and Asano, Sumitada, J. Phys. Soc. Jpn. 53 (1984), pp. 419426.Google Scholar
[13] Kaneko, Yoshio and Koda, Takao, J. Crystal Growth 86 (1988), pp. 7278.Google Scholar
[14] Asano, S., Nakao, Y., Yamashita, N. and Matsuyama, I., Phys. Stat. Sol. (b) 133 (1986), pp. 333344.Google Scholar
[15] Arterton, B. W., Brightwell, J. W., Ray, B., Viney, I. V. F., J. Crystal Growth, 138 (1994) pp. 10511054.Google Scholar
[16] Kato, Katsuhiro and Okamoto, Fumio, Jpn. J. Appl. Phys. 22 (1983), pp. 7678.Google Scholar
[17] Lee, San Tae, Kitagawa, Masahiko, Ichino, Kunio and Kobayashi, Hiroshi, Appl. Surf. Sci. 113–114 (1997), pp. 499503.Google Scholar
[18] Inoue, Ryo, Kitagawa, Masahiko, Horii, Yoshinori, Nishigaki, Takayoshi, Kinba, Setsuya, Ichino, Kunio, Tanaka, Shosaku, Kobayashi, Hiroshi, J. Crystal Growth 214/215 (2000) pp. 931934; J. Luminescence, 87-89 (2000) pp. 1264-1266.Google Scholar
[19] Jayaraj, M. K., Antony, Aldrin, Deneshan, P., Thin Solid Films 389 (2001) pp. 284287.Google Scholar
[20] Hoppe, R., Angew. Chem. 71 (1959), p. 457.Google Scholar
[21] Megson, B. H., (1971) MSc Thesis, Thames Polytechnic, London.Google Scholar
[22] Shionoya, Shigeo and Yen, William M., Phosphor Handbook (CRC press, 1999), p. 228.Google Scholar