Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T10:47:11.907Z Has data issue: false hasContentIssue false

Influence of Ion-Implantation on Characteristics of Picosecond Photoconductive Switches

Published online by Cambridge University Press:  25 February 2011

John F. Knudsen
Affiliation:
The Aerospace Corporation, 2350 E. El Segundo Blvd., El Segundo, CA 90245
Robert C. Bowman Jr.
Affiliation:
The Aerospace Corporation, 2350 E. El Segundo Blvd., El Segundo, CA 90245
Duane D. Smith
Affiliation:
The Aerospace Corporation, 2350 E. El Segundo Blvd., El Segundo, CA 90245
Steven C. Moss
Affiliation:
The Aerospace Corporation, 2350 E. El Segundo Blvd., El Segundo, CA 90245
Get access

Abstract

Ion-implantation induced amorphization has been used to modify the linearity of response of ultrafast photoconductive switches fabricated on SOS. The extent of amorphization was determined using various materials characterization techniques. TRIM-86 Monte Carlo calculations were used to model the defect densities produced by ion implantation. Linearity of response is critically dependent upon the nature of the semiconductor region under metallic contacts and the character of the response is opposite to that expected from reports in the literature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See, e.g., Picosecond Electronics and Optoelectronics II, Eds. Leonberger, F. J., Lee, C.-H., Cappasso, F., and Morkoc, H.,(Springer-Verlag, New York, 1987).Google Scholar
2. Auston, D. H., Johnson, A. M., Smith, P. R., and Bean, J. C., Appl. Phys. Lett. 37, 371373 (1980).Google Scholar
3. Smith, P. R., Auston, D. H., and Augustyniak, W. M., Appl. Phys. Lett. 19, 739741 (1981).10.1063/1.92875Google Scholar
4. Moss, S. C., Smith, D. D., and Cooper, D. E., Proc. SPIE Vol.795,225246(1987).Google Scholar
5. Cooper, D. E. and Moss, S. C., Ultrafast Phenomena V, Eds. Fleming, G. R. and Siegman, A. E., (Springer-Verlag, New York, 1986) pp. 117119.Google Scholar
6. Auston, D. H., Picosecond Optoelectronic Devices, Ed. Lee, C.-H., (Academic Press, New York, 1984) pp. 73118.Google Scholar
7. Knudsen, J. F., Bowman, R. C. Jr, Adams, P. M., Newman, R., Hurrell, J. P., Cole, R. C., Halle, L. F., and Barker, D. H., Proc. Symp. on Advanced Surface Processes for Optoelectronics, Vol.126, pp. 177182, Eds. Venkatesan, T., Bernasek, S., Stillman, G., and Temkin, H. (Materials Research Society, Pittsburg,PA,1988).Google Scholar
8. Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).Google Scholar
9. Maddox, R. L. and Golecki, I., Electron. Lett. 21, 154155(1985)CrossRefGoogle Scholar
10. Golecki, I., Mat. Res. Soc. Symp. Proc. 33, 323(1984).Google Scholar
11. TH. Englert, Abstreiter, G., and Pontcharra, J., Sol. St. Electron. 23, 3133(1980).Google Scholar
12. McCoy, J. H. and Wittry, D. B., J. Appl. Phys. 42, 11741181(1971).Google Scholar
13. Moss, S. C., Knudsen, J. F., and Smith, D. D., J. Mod. Opt., Dec.(1988)in press.Google Scholar
14. Tsai, M. Y., Streetman, B. G., Blattner, R. J., and Evans, C. A. Jr, J. Electrochem. Soc. 126, 98102(1979).Google Scholar