Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-09T14:57:55.419Z Has data issue: false hasContentIssue false

Influence of Domain Structure on Magnetoresistance in Perovskite Manganite Grain Boundary Junctions

Published online by Cambridge University Press:  21 March 2011

Robert Gunnarsson
Affiliation:
Department of Microelectronics and Nanoscience, Chalmers University of Technology and Göteborg University, SE-412 96 Göteborg, Sweden
Anatoli Kadigrobov
Affiliation:
Department of Microelectronics and Nanoscience, Chalmers University of Technology and Göteborg University, SE-412 96 Göteborg, Sweden B. I. Verkin Institute for Low Temperature Physics & Engineering, Kharkov, Ukraine
Zdravko Ivanov
Affiliation:
Department of Microelectronics and Nanoscience, Chalmers University of Technology and Göteborg University, SE-412 96 Göteborg, Sweden
Get access

Abstract

We have been able to deduce a temperature dependence of the built-in potential in La2/3Sr1/3MnO3 grain boundary junctions. This has been performed by trimming a single grain boundary down to 1μm width with a focused ion-beam. We can thereby see the impact of single domain walls on the magnetoresistance and the current-voltage characteristics. We have also demonstrated the effect of averaging as we increased the number of junctions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Helmolt, R. von, Wecker, J., Holzapfel, B., Schultz, L., Samwer, and K., Phys. Rev. Lett. 71, 2331 (1993); S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh, and L.H. Chen, Science 264, 413 (1994).Google Scholar
2. Hwang, H.Y., Cheong, S.-W., Ong, N.P. and Batlogg, B., Phys.Rev. Lett. 77, 2041 (1996); A. Gupta, G.Q. Gong, Gang Xiao, P.R. Duncombe, P. Lecoeur, P.Trouilloud, Y.Y. Wang, V.P. Dravid and J.Z. Sun, Phys. Rev. B 54, R51629 (1996).Google Scholar
3. Mathur, N.D., Burnell, G., Isaac, S.P., Jackson, T.J., Teo, B.-S., MacManus-Driscoll, J.L., Cohen, L.F., Evetts, J.E. and Blamire, M.G., Nature 387, 266 (1997); K. Steenbeck, T. Eick, K. Kirsch, K. O'Donnell and E. Steinbeiß, Appl. Phys. Lett. 71, 968 (1997).Google Scholar
4. Todd, N.K., Mathur, N.D., Isaac, S.P., Evetts, J.E. and Blamire, M.G., J. Appl. Phys. 85, 7263 (1999).Google Scholar
5. Westerburg, W., Martin, F., Friedrich, S., Maier, M. and Jakob, G., J. Appl. Phys. 86, 2173 (1999).Google Scholar
6. Gross, R., Alff, L., Büchner, B., Freitag, B.H., fener, C. Hö, Klein, J., Lu, Yafeng, Mader, W., Philipp, J.B., Rao, M.S.R., Reutler, P., Ritter, S., Thienhaus, S., Uhlenbruck, S. and Wiedenhorst, B., J. Magn. & Magn. Mater. 211, 150 (2000); C. Höfener, J.B. Philipp, J. Klein, L. Alff, A. Marx, B. Büchner and R. Gross, Europhys. Lett. 50, 681 (2000).Google Scholar
7. Mathieu, R., Svedlindh, P., Gunnarsson, R. and Ivanov, Z.G., Phys. Rev. B 63, 132407 (2001).Google Scholar
8. Soh, Yeong-Ah, Aeppli, G., Mathur, N.D. and Blamire, M.G., Phys. Rev. B 63, 020402(R).Google Scholar
9. Mathur, N.D., Littlewood, P.B., Todd, N.K., Isaac, S.P., Teo, B.-S., Kang, D.-J., Tarte, E.J., Barber, Z.H., Evetts, J.E. and Blamire, M.G., J. Appl. Phys. 86,6287 (1999).Google Scholar
10. Glazman, L.I. and Matveev, K.A., Sov. Phys. JETP 67, 1276 (1988).Google Scholar
11. Simmons, J.G., J. Appl. Phys. 34, 1793 (1963); ibid, J. Appl. Phys. 34, 2581 (1963).Google Scholar