Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T09:38:30.799Z Has data issue: false hasContentIssue false

The Influence of Defects and Piezoelectric Fields on the Luminescence from InGaN/GaN Single Quantum Wells

Published online by Cambridge University Press:  17 March 2011

S. J. Henley
Affiliation:
H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, U.K
D. Cherns
Affiliation:
H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, U.K
Get access

Abstract

High spatial resolution cathodoluminescence (CL) studies have been carried out on GaN/InGaN/(0001)GaN single quantum well (SQW) structures in a field emission scanning electron microscope at 5kV and temperatures down to 8K. Direct comparison of QW CL maps with transmission electron microscope studies of plan-view samples showed that edge type threading dislocations act as non-radiative recombination centers. Spectra taken from extended areas showed a progressive blue shift in the QW emission from around 460nm at low beam intensities to about 445nm as the beam intensity was increased. This effect which correlated with a decrease in the spatial resolution is interpreted as due to an increase in the diffusion length of carriers in the SQW due to a combination of screening of the piezoelectric field and band filling effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ponce, F. A. and Bour, D. B., Nature 386, 351 (1997).Google Scholar
2. Ponce, F. A., Bour, D. B., Götz, W., and Wright, P. J., Appl. Phys. Lett. 68, 57 (1996).Google Scholar
3. Rosner, S. J., Girolami, G., Marchand, H., Fini, P. T., Ibbetson, J. P., Zhao, L., Keller, S., Mishra, U. K., DenBaars, S. P. and Speck, J. S., Appl. Phys. Lett. 74, 2035 (1999).Google Scholar
4. Sugahara, T., Sato, H., Hao, M. S., Naoi, Y., Kurai, S., Tottori, S., Yamashita, K., Nishino, K., Romano, L. T. and Sakai, S., Jap. J. Appl. Phys. Lett. 37, L398 (1998).Google Scholar
5. Chichibu, S. F., Wada, K., Müllhäuser, J., Brandt, O., Ploog, K. H., Mizutani, T., Setoguchi, A., Nakai, R., Sugiyama, M., Nakanishi, H., Korii, K., Deguchi, T., Sota, T. and Nakamura, S., Appl. Phys. Lett. 76, 1671 (2000).Google Scholar
6. Elsner, J., Jones, R., Heggie, M. I., Sitch, P. K., Haugk, M., Frauenheim, Th., Öberg, S. and Briddon, P. R., Phys. Rev. B58 (1998) 12571.Google Scholar
7. Hino, T., Tomiya, S., Miyajima, T., Yanashima, K., S. Hashimoto and Ikeda, M., Appl. Phys. Lett. 76 (2000) 3421.Google Scholar
8. Bewick, A.. Henley, S. J. and Cherns, D., Proc. of EMAG 1999. Inst. Phys. Conf. Ser. No. 161: Section 11(1999) 581584.Google Scholar
9. Takeuchi, T., Sota, S., Katsuragawa, M., Komori, M., Takeuchi, H., Amano, H. and Akasaki, I., Jpn. J. Appl. Phys. 36 (1997) L382–L385.Google Scholar
10. Ponce, F. A., Cherns, D., Goetz, W. and Kern, R. S., Mat. Res. Soc. Conf. Proc. 482, 453 (1998).Google Scholar
11. Rosner, S. J., Carr, E. C., Ludowise, M. J., Girolami, G. and Erikson, H. I., Appl. Phys. Lett. 70, 420 (1997).Google Scholar