Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T15:25:52.723Z Has data issue: false hasContentIssue false

The Influence of Clusters on Vapor-Deposited thin Films: Atomistic Simulations

Published online by Cambridge University Press:  10 February 2011

J. Dalla Torreg
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA LPST, ESA5477-CNRS, Université Paul Sabatier and LAAS-CNRS, 31077 Toulouse, France
G. H. Gilmer
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA, [email protected]
F. H. Baumann
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA
P. O'Sullivan
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA
M. Djafari Rouhani
Affiliation:
LPST, ESA5477-CNRS, Université Paul Sabatier and LAAS-CNRS, 31077 Toulouse, France
Get access

Abstract

We investigate the morphology of films produced by cluster deposition using Monte Carlo atomistic simulations. Thin films of aluminum are considered as an example. The deposition of small Al clusters containing up to 5 atoms is simulated. Compared with monomer beams, Al cluster deposition increases the density of 3D islands nucleated on the substrate and tends to equalize the growth rate of the different crystal facets. We discuss the smoothening of the surface when the 3D islands merge. We find that there is an optimal size of the deposited clusters that produces the smoothest film.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Bromann, K., Brune, H., Félix, C., Harbich, W., Monot, R., Buttet, J., and Kern, K., Surf. Sci. 377–379, p. 1051 (1997).10.1016/S0039-6028(96)01544-0Google Scholar
2 Kuk, Y., Jarrold, M.F., Silverman, P.J., Bower, J.E., and Brown, W.L., Phys. Rev. B 39, p. 11168 (1989).10.1103/PhysRevB.39.11168Google Scholar
3 Fuchs, G., Melinon, P., Aires, F. Santos, Treilleux, M., Cabaud, B., and Hoareau, A., Phys. Rev. B 44, p. 3926 (1991).10.1103/PhysRevB.44.3926Google Scholar
4 Jensen, P., Rev. Mod. Phys. 71, p1695 (1999).10.1103/RevModPhys.71.1695Google Scholar
5 Huang, H., Gilmer, G.H., and Rubia, T. Díaz de la, J. Appl. Phys. 84, p3636 (1998).10.1063/1.368539Google Scholar
6 Jensen, P., Barabàsi, A.-L., Larralde, H., Havlin, S., and Stanley, H.E., Phys. Rev. B 50, p. 15316 (1994).10.1103/PhysRevB.50.15316Google Scholar