Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-05T15:09:01.090Z Has data issue: false hasContentIssue false

Indium-Impregnated Porous Glass: Magnetotransport and Superconducting Transition

Published online by Cambridge University Press:  28 February 2011

M. J. Graf
Affiliation:
Boston College, Dep. of Physics, Chestnut Hill, MA 02167
C. A. Huber
Affiliation:
Francis Bitter National Magnet Laboratory, M.I.T., Cambridge, MA 02139
T. E. Huber
Affiliation:
Harvard University, Lyman Laboratory of Physics, Cambridge, MA 02138
A. P. Salzberg
Affiliation:
University of Puerto Rico, Dep. of Physics, Rio Piedras, PR 00931
Get access

Abstract

Measurements of the resistive superconducting transition and magnetoresistance of indium metal in the restricted geometry of 50 Å size porous Vycor glass are reported. We have mapped out the upper critical magnetic field versus temperature phase diagram for these transitions for fields up to 20 T and temperatures down to 100 mK. The results are consistent with magnetization measurements by previous authors and can be generally interpreted in terms of the description of inhomogeneous type-II superconductors. The field-induced resistive transitions exhibit unusual behavior not probed by previous bulk-type measurements which may be related to the microstructure of the composite.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bean, C.P., Doyle, M.V., and Pincus, A.G., Phys. Rev. Lett. 9, 93 (1962).Google Scholar
2. Bean, C.P., Rev. Mod. Phys. 36, 31 (1964).Google Scholar
3. Watson, J.H.P., Phys. Rev. 148, 223 (1964).Google Scholar
4. Hindley, N.K. and Watson, J.H.P., Phys. Rev. 183, 525 (1969).Google Scholar
5. Schmidt, W.G. and Charles, R.J., J. Appl. Phys. 35, 2552 (1964).Google Scholar
6. Huber, C.A. and Huber, T.E., J. Appl. Phys. 64, 6588 (1988); C.A. Huber, T.E. Huber, A.P. Salzberg, and J.A. Perez, Mat. Res. Soc. Symp. Proc. 164, 117 (1990).Google Scholar
7. Watson, J.H.P., Phys. Rev. B2, 1282 (1970).Google Scholar
8. Standish, W.J. and Pompi, R.L., Phys. Rev. B21, 5185 (1980).Google Scholar
9. McMillan, W.L., Phys. Rev. 167, 331 (1968); S. Matsuo, H. Sugiura, and S. Noguchi, J. Low Temp. Phys. 15, 481 (1974).Google Scholar
10. Gennes, P.G. de, “Superconductivity of Metals and Alloys” (Benjamin, New York, 1966).Google Scholar
11. Parks, R.D., Mochel, J.M., and Surgent, L.V., Phys. Rev. Lett. 13, 331a (1964).Google Scholar