Article contents
Indentation-Induced Damage Mechanisms in Germanium
Published online by Cambridge University Press: 26 February 2011
Abstract
The response of crystalline Ge to indentation has been studied over a range of maximum loads. At a certain load, an unusual ‘giant pop-in’ event occurs, in which a discontinuous extension of >1 μm is observed in the force-displacement curve. In such cases, load release curves show a pronounced ‘elbowing’ response, leading to increased depth recovery. TEM and Raman microspectroscopy revealed the presence of amorphous material in the residual impression. To examine cracking, a sequence of cross-sections was milled through the indent and images taken using an automated method (the ‘slice-and-view’ method). Using 3-D reconstruction software, the data was segmented and reconstructed into a 3-dimensional representation of the cracks around the indent. Applying this technique to indents featuring a giant pop-in, it was deduced that the inelastic elbowing observed was a bending response of material detached by lateral cracking. The giant pop-in is attributable to material removal, caused by lateral cracks formed during loading.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2007
References
- 1
- Cited by