Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T15:36:09.374Z Has data issue: false hasContentIssue false

Indentation Crystal Plasticity: Experiments and Multiscale Simulations

Published online by Cambridge University Press:  31 January 2011

Hyung Jun Chang
Affiliation:
[email protected], Univ. de Grenoble, SIMaP-CNRS, Grenoble, France
Marc Fivel
Affiliation:
[email protected], Univ. de Grenoble, SIMaP-CNRS, Grenoble, France
Marc Verdier
Affiliation:
[email protected], Univ. de Grenoble, SIMaP-CNRS, Grenoble, France
Get access

Abstract

This work aims at a quantitative simulation of instrumented indentation test based on physics of crystal plasticity. Indentation loading is associated with a complex 3D deformation path: it can be viewed as an ideal benchmark to test various crystal plasticity assumptions. For large scale indentation (micron size), a 3D numerical simulation using finite element crystal plasticity (FEM) is setup and quantitatively compared to experimental results using critical constraints: the load/stiffness-displacement curves and the surface displacements. Various set of parameters obtained from Dislocation Dynamics (DD) are used. A comparison with experiments shows the dominant effect of initial dislocation density and slip system interactions. For smaller depth (maximum 100 nm), Dislocation Dynamics coupled simulations to FEM are setup. Since this approach does not provide defect nucleation rules, several strategies are implemented and tested: fitting to Molecular Dynamics (MD) load-depth curve for spherical tip, or automatic generation of deformation accommodating dislocation (GND) for conical tip geometry for example. In this framework, size effects show up in the modification of the dislocation structures with depth through critical expansion of dislocation loops and junction formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] see for example MRS Proceedings on Nanoindentation or J.Mater.Res. 24 (3) (2009).Google Scholar
[2] Suresh, S., Nieh, T.G., Choi, B.W., Scripta Mater.,41 (1999) 951957.Google Scholar
[3] Gerberich, W.W., Mook, W.M. et al., Jal App. Mech. Trans ASME 73 (2006), 327334.Google Scholar
[4] Bei, H., Gao, Y.F., Shim, S., George, E.P., Pharr, G.M., Phys. Rev. B 77 (2008) 060103.Google Scholar
[5] Kysar, J.W., Gan, Y.X., Morse, T.L., Chen, X., Jones, M.E., J. Mech. Phys. Sol. 55 (2007) 15541573.Google Scholar
[6] Zaafarani, N., Raabe, D., Singh, R. N., Roters, F., Zaefferer, S., Acta Mater., 54 (2006), 1863.Google Scholar
[7] Rester, M., Motz, C., Pippan, R. Phil. Mag. Lett. 88, 879 (2008).Google Scholar
[8] Crystal kindly provided by Prof. Niewczas, M., McMaster Uni. (Ca).Google Scholar
[9] McElhaney, K.W., Vlassak, J.J., Nix, W.D., J. Mater. Res. 13 (1998) 13001306.Google Scholar
[10] Liu, Y., Ngan, A.H.W., Scripta Mater. 44 (2001) 237241.Google Scholar
[11] Wang, Y., Raabe, D., Kluber, C., Roters, F., Acta Mater., 52 (2004), 229.Google Scholar
[12] Casals, O., Ocenasek, J., J. Alcala, Acta Mater., 55 (2007), 55.Google Scholar
[13] Zaafarani, N., Raabe, D., Roters, F., Zaefferer, S., Acta Mater., 56 (2008), 31.Google Scholar
[14] Liu, Y., Yoshino, M., Lu, H., Komanduri, R., Int. J. Plast. 24 (2008) 19902015.Google Scholar
[15] ABAQUS version 6.5, Analysis User's manual, Hibbitt, Karlsson and Sorensen, Pawtucket, RI, 2004.Google Scholar
[16] Simmons, G. and Wang, H., Single Crystal Elastic Constants and Calculated Aggregate Properties: Handbook, A (2nd ed.). MIT Press, Cambridge, MA, 1971.Google Scholar
[17] Kocks, UF., Mecking, H., Prog. Mat. Sci. 48 (2003) 171273.Google Scholar
[18] Tabourot, L., Fivel, M., Rauch, E., Mater. Sci. Eng. A, 234-236 (1997), 639.Google Scholar
[19] Saada, G., Acta Met. 8 (1960) 841.Google Scholar
[20] Fivel, M., PhD These, Institut National Polytechnique de Grenoble (1997).Google Scholar
[21] Kubin, L., Devincre, B. and Hoc, T., Acta Mater., 56 (2008), 6040.Google Scholar
[22] Devincre, B., Kubin, L. and Hoc, T., Scripta Mater., 54 (2006), 741.Google Scholar
[23] Hirth, J.P., Lothe, J., Theory of dislocations, 2nd Ed., Wiley Interscience, N.Y.:McGraw-Hill (1982).Google Scholar
[24] Lim, Y.Y., Chaudhri, M.M., Phil. Mag. 82, 2071 (2002).Google Scholar
[25] Vlassak, J. J., Nix, W. D., J. Mech. Phys. Solids, 42 (1994), 1223.Google Scholar
[26] Chang, H.Y., These, Institut National Polytechnique de Grenoble (2009).Google Scholar
[27] Rester, M., Motz, C., Pippan, R., J. Mater. Res. 24 (2009) 647651.Google Scholar
[28] Verdier, M., Fivel, M., Groma, I., Modelling Simulation Mater. Sci. Eng., 6 (1998), 755.Google Scholar
[29] CASTEM Finite Element Method, kindly provided LMS/DMT CEA Saclay (Fr).Google Scholar
[30] van-der-Giessen, E., Needleman, A., Modelling Simulation Mater. Sci. Eng., 3 (1995),689.Google Scholar