Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-06T02:42:50.274Z Has data issue: false hasContentIssue false

Incorporation of Rare-Earth Complexes in α-Zirconium Phosphate Layered Matrices via Pendant Amino Groups

Published online by Cambridge University Press:  01 February 2011

Shanez Tlemsani
Affiliation:
Laboratoire des Matériaux Inorganiques, UMR-CNRS 6002, Université Blaise Pascal and ENSCCF, 24 Av. des Landais, 63174 Aubiere Cedex, FRANCE.
Anne-Christine Franville
Affiliation:
Laboratoire des Matériaux Inorganiques, UMR-CNRS 6002, Université Blaise Pascal and ENSCCF, 24 Av. des Landais, 63174 Aubiere Cedex, FRANCE.
Daniel Zambon
Affiliation:
Laboratoire des Matériaux Inorganiques, UMR-CNRS 6002, Université Blaise Pascal and ENSCCF, 24 Av. des Landais, 63174 Aubiere Cedex, FRANCE.
Rachid Mahiou
Affiliation:
Laboratoire des Matériaux Inorganiques, UMR-CNRS 6002, Université Blaise Pascal and ENSCCF, 24 Av. des Landais, 63174 Aubiere Cedex, FRANCE.
Get access

Abstract

Amino-substituted rare-earth complexes (p-LnNH2DBM and m-LnNH2DBM with Ln3+ = Eu3+, Y3+) are intercalated in the interlayer region of a α-zirconium phosphate lattice to give luminescent hybrid lamellar materials. The preparation of the organic precursors and of the derived organic-inorganic materials is reported. XRD studies show that the hybrid compounds retain a layered structure and FTIR spectroscopy is used to monitor the intercalation reaction. The acid/base interactions between the NH2 functions and the pendant P-OH groups induce an important blue-shift of the absorption maximum of the organic molecule. The Eu3+ luminescence properties are investigated before and after intercalation of the organic complexes in the α-ZrP host structure and the optical characteristics of the para and meta derivatives are also compared.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Alvaro, M. Fornes, V. Garcia, S. Garcia, H. and Scaiano, J.C. J. Phys. Chem. 102, 8744 (1998).Google Scholar
2. Hazenkamp, M.F, Blasse, G. and Sabbatini, N. J. Phys. Chem. 95, 783 (1991).Google Scholar
3. Matthews, L.R. and Knobbe, E.T. Chem. Mater. 5, 1697 (1993).Google Scholar
4. Bermudez, V. de Zea, Carlos, L.D. Duarte, M.C. Silva, M.M. Silva, C.J.R., Smith, M.J. Assuncao, M. and Alcacer, L. J. Alloys and Compounds 275-277, 21 (1998).Google Scholar
5. O'Hare, D., New J. Chem. 18, 989 (1994).Google Scholar
6. Bujoli, B. and Piffard, Y. “Matériaux hybrides organiques-inorganiques lamellaires”, Matériaux hybrides, Arago 17 (Masson, 1996) pp. 7589.Google Scholar
7. Clearfield, A. Blessing, R.H. and Stynes, J.A. J. Inorg. Nucl. Chem. 30, 2249 (1968).Google Scholar
8. Chatakondu, K. Formstone, C. Green, M.L.H. O'Hare, D., Twyman, J.M. and Wisemen, P.J. J. Mater. Chem. 1, 205 (1991).Google Scholar
9. Ferragina, C. Massucci, M.A.; Tomlinson, A.A.G. J. Chem. Soc. Dalton trans, 1191 (1990).Google Scholar
10. Kim, R.M. Pillion, J.E. Burwell, D.A. Groves, J.T. and Thompson, M.E. Inorg. Chem. 32, 4509 (1993).Google Scholar
11. Franville, A.-C. Zambon, D. Mahiou, R. and Troin, Y. Chem. Mater. 12, 428 (2000).Google Scholar
12. Adam, W. Kita, F. Harrer, H.M. Nau, W. N. and Zipf, R. J. Org. Chem. 61, 7056 (1996).Google Scholar