Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T17:49:02.899Z Has data issue: false hasContentIssue false

Incorporation of Radioactive Metals and Trace Metals into Phosphate “Anhydrous” Autunite: Thermodynamic Evaluation

Published online by Cambridge University Press:  11 February 2011

Huifang Xu
Affiliation:
Department of Earth and Planetary Sciences, The University of New Mexico, Albuquerque, New Mexico 87131, USA. E-mail: [email protected]
Yifeng Wang
Affiliation:
Sandia National Laboratories, Carlsbad, New Mexico 88220, USA. E-mail: [email protected]
Get access

Abstract

The prediction of heavy metal solubility in the presence of phosphate is the key for designing a successful environmental remediation strategy or for the performance assessment of a nuclear waste repository. In order to evaluate the possibility for solubilities and incorporation of U and its fission products, such as Cs, Np, Pu, it is important to have the Gibbs free energies of formation of possible end-member phases. In this paper, we use a linear free energy relationship to calculate the Gibbs free energies of formation of divalent cation “anhydrous” autunite phases [M2+(UO2)2(PO4)2] and monovalent cation “anhydrous” autunite phases [M+2(UO2)2(PO4)2]. Based on predicted Gibbs free energies of formation for autunite phases, an equilibrium calculation indicates that it is feasible to incorporate NpO2+ into the autunite phases. If concentration of Cs+ is high, Cs+ will be incorporated into the autunite phases. However, it is not feasible to incorporate low concentration Cs+ released from spent fuel into the uranyl phosphate phases with layered structure and interlayer water (such as autunite phases, boltwoodite phases, and uranophane phases) as previously proposed. The predicted data can be considered as a first order approximation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES Cited

(1) Nriagu, J. O., Geochim. Cosmochim. Acta, 38, 887898 (1974).Google Scholar
(2) Ma, Q. Y., Traina, S. J., Logan, T. J., Ryan, J., A., , Environ. Sci. Technol., 27, 18031810 (1993).Google Scholar
(3) Chen, X, Wright, J. V., Conca, J. L., Peurrung, L. M., Environ. Sci. Technol., 31, 624631 (1997).Google Scholar
(4) National Research Council, Glass as a Waste Form and Vitrification Technology. National Academy Press, Washington, D. C. (1996).Google Scholar
(5) Bennett, D. G., Papenguth, H. W., Chu, M. S., Galson, D. A., Duerden, S. L., and Matthews, M. L., International Workshop on the Uses of Backfill in Nuclear Waste Repositories. US DOE. R&D Technical Report P178 (1998).Google Scholar
(6) Frondel, C., US Geological Survey Bulletin, No. 1064 (1958).Google Scholar
(7) Finch, R. J., Paragenesis and Crystal Chemistry of the Uranyl Oxide Hydrates. Ph. D. Dissertation, The University of New Mexico (1994).Google Scholar
(8) Burns, P. C., J. Nuclear Material., 265, 218233 (1999).Google Scholar
(9) Burns, P. C., Ewing, E. C., and Miller, M. L., J. Nuclear Material., 245, 19 (1997).Google Scholar
(10) Buck, E. C., Finch, R. J., Finn, P. A., and Bates, J. K., In Ian, J. McKinley, G. and McCombie, Charles eds. “Scientific Basis for Nuclear Waste Management XXI,” Materials Research Society, 8794 (1998).Google Scholar
(11) Tardy, Y., and Garrels, R. M., Geochim. Cosmochim. Acta, 38, 11011116 (1974).Google Scholar
(12) Tardy, Y., and Garrels, R. M., Geochim. Cosmochim. Acta, 40, 10511056 (1974).Google Scholar
(13) Tardy, Y., and Garrels, R. M., Geochim. Cosmochim. Acta, 41, 8792 (1974).Google Scholar
(14) Helgeson, H. C., Delaney, J. M., Nesbitt, H. W., and Bird, D. C., Am. J. Sci., A278, 1229 (1978).Google Scholar
(15) Viellard, P. H., and Tardy, Y., Am. J. Sci., 288, 9971040 (1988).Google Scholar
(16) Hazen, R. M., Am. J. Sci., 288A, 242269 (1988).Google Scholar
(17) Essington, M. E., Soil Sci. Soc. Am. J., 52, 15741579 (1988).Google Scholar
(18) Chermak, J. A., and Rimstidt, J. D., Am. Mineral., 74, 10231031 (1989).Google Scholar
(19) Chermak, J. A., and Rimstidt, J. D., Am. Mineral., 75, 13761380 (1990).Google Scholar
(20) Clark, S. B., Ewing, R. C., and Schaumloffel, J. C., Journal of Alloys and Compounds, 271–273, 189193 (1998).Google Scholar
(21) Sverjensky, D. A., and Molling, P. A., Nature, 356, 231234 (1992).Google Scholar
(22) Wells, P.R., Linear Free Energy Relationships. Academic, London, 116 pp (1968).Google Scholar
(23) Exner, O., Correlation Analysis of Chemical Data. Plenum, New York, 275 pp.Google Scholar
(24) Hammett, L. P. (1970) Physical Organic Chemistry. McGill-Hill, New York, 420pp (1988).Google Scholar
(25) Xu, H., Wang, Y., and Barton, L. L., Journal of Nuclear Materails, 273, 343346 (1999).Google Scholar
(26) Shannon, R. D., and Prewitt, C. T., Acta Crystallogr., B25, 925 (1969).Google Scholar
(27) Shock, E. L., and Helgeson, H. C., Geochim. Cosmochim. Acta, 52, 20092036 (1988).Google Scholar
(28) Brookins, D.G., Eh-pH Diagrams for Geochemistry. Springer-Verlag, Berlin, 176pp (1988).Google Scholar
(29) OECD (Organization for Economic Co-operation and Development), Compilation of selected thermodynamic data (1985).Google Scholar
(30) Pourbaix, M., Atlas of Electrochemical Equilibria in aqueous solutions. Ceblcor, Brussels (1974).Google Scholar
(31) Cox, J. D., Wagman, D. D., and Medvedev, V. A., CODATA Thermodynamic Tables. Hemisphere, New York (1989).Google Scholar
(32) Langmuir, D., Geochim. Cosmochim. Acta, 42, 547569 (1978).Google Scholar
(33) Weigel, F., and Hoffman, G, Journal of Less-common Metals, 44, 99123 (1976).Google Scholar
(34) Grenthe, I., Fuger, J., Kongs, R. J. M., Lemire, R. J., Muller, A. B., Nguyen-Trung, C., and Wanner, H., Chemical Thermodynamic of Uranium. North-Holland, Amsterdam, 715pp (1992).Google Scholar
(35) Wang, Y., and Xu, H., Geochimica et Cosmochimica Acta, 65, 15291543 (2001).Google Scholar
(36) An isovalent metal partitioning process can be described by the following reaction:Google Scholar