Published online by Cambridge University Press: 15 February 2011
Excess arsenic can be incorporated in GaAs and AIGaAs epilayers by growing at low substrate temperatures (LT-GaAs and LT-AIGaAs) by molecular beam epitaxy (MBE). Upon annealing these epilayers, the excess As precipitates forming GaAs:As and AIGaAs:As. Using transmission electron microscopy (TEM), we have measured the densities and sizes of the As precipitates and thereby determined the amount of excess As incorporated in these epilayers. The volume fraction of excess As as a function of inverse substrate growth temperature follows an Arrhenius-type behavior with an activation energy of 0.87 eV. The sizes of the As precipitates increase and the densities decrease with increase anneal temperatures; for Si-doped GaAs:As this results in n-type material when the densities become small enough that the depletion regions around the As precipitates no longer overlap. Also investigated is the formation of As precipitates at GaAs/AIGaAs heterojunctions and superlattices, and our attempts to tailor the As precipitate distribution.