Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T08:07:01.026Z Has data issue: false hasContentIssue false

The Incorporation and Behavior of Oxygen in AlGaAs Grown by Mombe Using Trimethylamine Alane

Published online by Cambridge University Press:  25 February 2011

C. R. Abernathy
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
J. Song
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139
W. S. Hobson
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
F. Ren
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
D. A. Bohling
Affiliation:
Air Products and Chemicals, Inc., Allentown, PA 18195
G. T. Muhr
Affiliation:
Air Products and Chemicals, Inc., Allentown, PA 18195
Get access

Abstract

Trimethylamine alane (TMAAl) has been demonstrated to be a superior Al precursor for growth of AIGaAs by metal-organic molecular beam (MOMBE). TMAA1 reduces both carbon and oxygen contamination relative to the standard Al source, triethylaluminum (TEA1). However, AlGaAs grown with TMAAl still shows a residual oxygen background of ∼2 × 1018 cm−3 when used with triethylgallium (TEGa) and either As4 or ASH3. This background is independent of Al mole fraction and is due primarily to alkoxides in the TEGa. AIGaAs grown with TMAAl and elemental Ga contains oxygen at levels commonly obtained in MBE, −2 × 1017 cm-3. While an oxygen level of −2 × 1018 cm-3 is not desirable, we have found that most of this impurity is electrically inactive as evidenced by room temperature photoluminescence and n-type dopant activation. In light of this, we have assessed the applicability of AlGaAs grown with TMAAl to the fabrication of high-speed GaAs/AIGaAs devices. The source is found to be suitable for structures like the heterojunction bipolar transistor.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Houng, Y. M., Pao, Y. C., and McLeod, P., Mat. Res. Soc. Symp. Proc. 145 (1989) 63.Google Scholar
2. Abernathy, C. R., Pearton, S. J., Baiocchi, F. A., Ambrose, T., and Jordan, A. S., acceptedfor publication in J. Cryst. Growth (1991).Google Scholar
3. Lee, B. J., Houng, Y. M., Miller, J. N. and Turner, J. E., J. Cryst. Growth 105 (1990).Google Scholar
4. Frese, V., Regel, G. K., Hardtegen, H., Brauers, A., Balk, P., Lokai, M., Pohl, L., Miklis, A., J. Elect. Mat. 19 (1990) 305.Google Scholar
5. Abernathy, C. R., Song, J. and Pearton, S. J., unpublished results.Google Scholar
6. Achtnich, T., Burri, G., Ilegems, M., J. Vac. Sci. Technol. A 7 (1989) 2532.Google Scholar
7. Kuech, T. F., Wolford, D. J., Veuhoff, E., Deline, V., Mooney, P. M., Potemski, R. and Bradley, J., J. Appl. Phys. 62 (1987) 632.Google Scholar
8. Nakanisi, T., J. Cryst. Growth 68 (1984) 282.Google Scholar
9. Kuech, T., Tischler, M. A., Potemski, R., Cardone, F., and Scilla, G., J. Cryst. Growth 98 (1989) 174.Google Scholar
10. Ren, F., Abernathy, C. R., Pearton, S. J., Fullowan, T. R., Lothian, J. and Jordan, A. S., Elec. Lett. 26 (1990) 724.Google Scholar