Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T18:43:22.288Z Has data issue: false hasContentIssue false

In SITU Spectroscopic Diagnostics of the Influence of Chamber Wall Polymer on Oxide Etch Rate

Published online by Cambridge University Press:  10 February 2011

Szetsen Lee
Affiliation:
Winbond Electronics Corporation, Fab 4, 9 Li Hsin Road, Hsinchu, Taiwan, 300
Yu-Chung Tien
Affiliation:
Winbond Electronics Corporation, Fab 4, 9 Li Hsin Road, Hsinchu, Taiwan, 300
Chin-Fa Hsu
Affiliation:
Winbond Electronics Corporation, Fab 4, 9 Li Hsin Road, Hsinchu, Taiwan, 300
Get access

Abstract

The drift of PECVD TEOS etch rate has been observed during MERIE oxide etch for damascene process. Etch rate typically fluctuates between 5300 Å/min. and 6000 Å/min. depending on chamber condition. Studies using fluorocarbon based chemistry show high TEOS etch rate when chamber wall is heavily coated with polymer deposition. Low etch rate appears when chamber has less deposition. Hysteresis behavior has been observed in TEOS etch rate and emission intensity trends ofF and CFx (x = 1 ∼ 3). From the correlation between etch rate and emission intensity, a model is proposed to explain the impact of chamber wall polymer deposition on TEOS etch rate. It clearly shows that F is directly responsible for the etch of TEOS. Comparing to F, CFx plasma chemistry has a closer link in chamber wall polymer formation, but less contribution in the etch of TEOS.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Plasma Etching, An Introduction, Manos, D.M. and Flamm, D.L. eds. (Academic Press, San Diego, 1989).Google Scholar
2. Handbook of Plasma Processing Technology: Fundamentals, Etching, and Surface Interac tions., Rossnagel, S.M., Cuomo, J.J., and Westwood, W.D. eds. (Noyes Publications, Park Ridge, NJ, 1990).Google Scholar
3. Mogab, C.J., Adams, A.C., and Flamm, D.L., J. Appl. Phys., 49, p. 3796 (1978).Google Scholar
4. Heinecke, R. A., Solid State Electron., 18, p. 1146 (1975).Google Scholar
5. Joyce, S., Langan, J. G., and Steinfeld, J. I., J. Chem. Phys., 88, p. 2027 (1988).Google Scholar
6. Agostino, R. D’, Cramarossa, F., De Benedictis, S., and Ferraro, G., J. Appl. Phys., 52, p. 1259 (1981).Google Scholar
7. Sugai, H., Nakamura, K., Hikosaka, Y., and Nakamura, M., J. Vac. Sci. Technol. A, 13, p. 887 (1995).Google Scholar
8. Liu, C.J., Lee, S., Tai, S.K., Tien, Y. C., Hsu, C.F., and Su, J., Plasma Processing XII, Mathad, G.S. and Hess, D.W. Editors. PV98-4, p. 165, The Electrochemical Society Proceedings Series, Pennington, NJ (1998).Google Scholar
9. Harshbarger, W. R., Porter, R. A., Miller, T. A., and Norton, P., Appl. Spectrosc., 31, p. 201 (1977).Google Scholar
10. Carroll, P. K. and Grennar, T. P., J. Phys. B. 3, p. 865 (1970).Google Scholar
11. King, D. S., Schenck, P. K., and Stephenson, J. C., J. Mol. Spectrosc., 78, p. 1 (1979).Google Scholar
12. Suto, M. and Washida, N., J. Chem. Phys., 78, p. 1012 (1983).Google Scholar
13. Larrieu, C., Chaillet, M., and Dargelos, A., J. Chem. Phys., 96, p. 3732 (1992).Google Scholar
14. Donnelly, V. M., Flamm, D. L., Dautremont-Smith, W. C., and Werder, D. J., J. Appl. Phys., 55, p. 242 (1984).Google Scholar
15. Oehrlein, G. S., Robey, S. W., and Lindstrom, J. L., Appl. Phys. Lett., 52, p. 1170 (1988).Google Scholar