Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T17:40:28.707Z Has data issue: false hasContentIssue false

In Situ, Real-Time Analysis of the Growth of Ferroelectric and Conductive Oxide Heterostructures by a New Time-of-Flight Pulsed Ion Beam Surface Analysis Technique

Published online by Cambridge University Press:  15 February 2011

Orlando Auciello
Affiliation:
MCNC, Electronics Technology Division, Research Triangle Park, NC 27709-2889
A. R. Krauss
Affiliation:
Argonne National Laboratory, Materials Science and Chemistry Divisions, Argonne, IL 60439
Y. Lin
Affiliation:
Argonne National Laboratory, Materials Science and Chemistry Divisions, Argonne, IL 60439
R. P. H. Chang
Affiliation:
Northwestern University, Department of Materials Science, Evanston, IL 60208
D. M. Gruen
Affiliation:
Argonne National Laboratory, Materials Science and Chemistry Divisions, Argonne, IL 60439
Get access

Abstract

A new time-of-flight ion scattering and recoil spectroscopy (TOF-ISARS) technique has been developed and is now used to perform in situ, real-time analysis of ferroelectric and conductive oxide layers during growth. Initial results presented here show various major effects, namely: (a) RuO2 films on MgO substrates appear to be terminated in O atoms on the top layer located in between Ru atoms lying in the layer underneath (This effect may have major implications for the explanation of the elimination of polarization fatigue demonstrated for RuO2/PZT/RuO2 heterostructure capacitors); (b) deposition of a Ru monolayer on top of a Pb monolayer results in surface segregation of Pb until a complete Pb layer develops over the Ru monolayer; and (c) a Pb/Zr/Ti layered structure yields a top Pb layer with first evidence of the existence of Pb vacancies, which also may have major implications in relation to the electrical characteristics of PZT-based capacitors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Carrano, J., Sudhama, C., Lee, J., Tasch, A., Shepherd, W.H., and Abt, N., IEEE Trans. Ultrasonics, Ferroelectrics, and Freq. Control, 38, 690 (1991).CrossRefGoogle Scholar
2. Scott, J.F. and Paz de Araujo, C.A., Science, 246, 1400 (1989).CrossRefGoogle Scholar
3. Proceedings of the 4th International Symposium on Interated Ferroelectrics edited by Araujo, C.A. Paz de (University of Colorado Press, Colorado Springs, 1992).Google Scholar
4. “Ferroelectric Thin Films II” edited by Kingon, A.I., Myers, E.R., and Tuttle, B. (Mater. Res. Soc. Proc. 243, Pittsburgh, PA, 1991)).Google Scholar
5. Multicomponent and Multilayered Thin Films for Advanced Microtechnologies: Techniques. Fundamentals and Devices, edited by Auciello, O. and Engemann, J. (NATO/ASI Book Series E, vol.234, Kluwer Academic Publishers, The Netherlands, 1993).Google Scholar
6. Mihara, T., Watanabe, H., Araujo, C.A. Paz de, Cuchiaro, J., Scott, M., and McMillan, L.D., Proc. 4th Intern. Symp. on Integrated Ferroelectrics, edited by Araujo, C.A. Paz de (University of Colorado Press, Colorado Springs, 1992) p. 137.Google Scholar
7. Kwok, C.K., Vijay, D.P., Desu, S. B., Parikh, N.R., and Hill, E.A., Proceedings of the 4th International Symposium on InteIrated Ferroelectrics, edited by Araujo, C.A. Paz de (University of Colorado Press, Colorado Springs, 1992) p. 412.Google Scholar
8. Al-Shareef, H.N., Bellur, K.R., Auciello, O., and Kingon, A.I., Proc. 5th Intern. Symp. On IntegMated Ferroelectrics, edited by Araujo, C.A. Paz de (University of Colorado Press, in press, 1994).Google Scholar
9. Auciello, O., Gifford, K.D., and Kingon, A.I., Appl. Phys. Lett. (in press, 1994).Google Scholar
10. Auciello, O., AI-Shareef, H.N., Gifford, K.D., Lichtenwalner, D.J., Dat, R., Bellur, K. R., and Kingon, A.I., Epitaxial Oxide Thin Films and Heterostructures, edited by Ramesh, R. and Phillips, J.M. (Mater. Res. Soc. Proc., Pittsburgh, PA, in press, 1994).Google Scholar
11. Ramesh, R., Gilchrist, H., Sand, T., Keramidas, V.G., Haakenaasen, R., and Fork, D.K., Appl. Phys. Lett., 63, 3592 (1994).Google Scholar
12. Dat, R., Lichtenwalner, D.J., Auciello, O., and Kingon, A.I., Appl. Phys. Lett. (in press, 1994).Google Scholar
13. Ramesh, R., Lee, J., Sands, T., Keramidas, V.G., and Auciello, O., Appl. Phys. Lett. (in press, 1994).Google Scholar
14. Kwok, C.K. and Desu, S., J. Mater. Res., 8, 339 (1993).Google Scholar
15. Krauss, A.R., Lin, Y., Auciello, O., Lamich, G.J., Gruen, D.M., Schultz, J.A., and Chang, R.P. H., J. Vac. Sci.Technol., A, (in press, 1994).Google Scholar
16. Lin, Y., Krauss, A.R., Auciello, O., Nishino, Y., Gruen, D.M., Chang, R.P.H., and Schultz, J.A., J. Vac. Sci.Technol., A, (in press, 1994).Google Scholar
17. Krauss, A.R. and Auciello, O., US patent 4,923,585 (1990).Google Scholar
18. Miedema, A.R., Z. Metallkd., 69, 287 (1977).Google Scholar