Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T07:26:13.180Z Has data issue: false hasContentIssue false

In Situ Probing and Atomistic Simulation of a-Si:H Plasma Deposition

Published online by Cambridge University Press:  17 March 2011

Eray S. Aydil
Affiliation:
Chemical Engineering Department, University of California Santa Barbara, Santa Barbara, CA 93106, U. S. A.
Dimitrios Maroudas
Affiliation:
Chemical Engineering Department, University of California Santa Barbara, Santa Barbara, CA 93106, U. S. A.
Denise C. Marra
Affiliation:
Chemical Engineering Department, University of California Santa Barbara, Santa Barbara, CA 93106, U. S. A.
W. M. M. Kessels
Affiliation:
Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Sumit Agarwal
Affiliation:
Chemical Engineering Department, University of California Santa Barbara, Santa Barbara, CA 93106, U. S. A.
Shyam Ramalingam
Affiliation:
Chemical Engineering Department, University of California Santa Barbara, Santa Barbara, CA 93106, U. S. A.
Saravanapriyan Sriraman
Affiliation:
Chemical Engineering Department, University of California Santa Barbara, Santa Barbara, CA 93106, U. S. A.
M. C. M. Van de Sanden
Affiliation:
Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Akihiro Takano
Affiliation:
Chemical Engineering Department, University of California Santa Barbara, Santa Barbara, CA 93106, U. S. A. Permanent Address: Fuji Electric Corporate Research and Development, Ltd., 2-2-1, Nagasaka, Yokusuka-City 240-0194, Japan
Get access

Abstract

Hydrogenated amorphous silicon thin films deposited from SiH4 containing plasmas are used in solar cells and thin film transistors for flat panel displays. Understanding the fundamental microscopic surface processes that lead to Si deposition and H incorporation is important for controlling the film properties. An in situ method based on attenuated total internal reflection Fourier transform infrared (ATR-FTIR) spectroscopy was developed and used to determine the surface coverage of silicon mono-, di-, and tri-hydrides as a function of deposition temperature and ion bombardment flux. Key reactions that take place on the surface during deposition are hypothesized based on the evolution of the surface hydride composition as a function of temperature and ion flux. In conjunction with the experiments, the growth of a-Si:H on H-terminated Si(001)-(2×1) surfaces was simulated through molecular dynamics. The simulation results were compared with experimental measurements to validate the simulations and to provide supporting evidence for radical-surface interaction mechanisms hypothesized based on the infrared spectroscopy data. Experimental measurements of the surface silicon hydride coverage and atomistic simulations are used synergistically to elucidate elementary processes occurring on the surface during a-Si:H deposition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Biswas, R., Kwon, I., and Soukoulis, C. M., Phys. Rev. B 44, 3403 (1991).Google Scholar
2. Li, Q., and Biswas, R., Appl. Phys. Lett. 68, 2261 (1996).Google Scholar
3. Biswas, R., and Pan, B. C., Appl. Phys. Lett. 72, 371 (1998).Google Scholar
4. Fujiwara, H., Koh, J., Wronski, C. R., and Collins, R. W., Appl. Phys. Lett. 74, 3687 (1999).Google Scholar
5. Lubianiker, Y., Cohen, J. D., Jin, H.-C., and Abelson, J. R., Phys. Rev. B 60, 4434 (1999).Google Scholar
6. Marra, D. C., Edelberg, E. A., Naone, R. L., and Aydil, E. S., J. Vac. Sci. Technol. A 16, 3199 (1998).Google Scholar
7. Chabal, Y. J., Surf. Sci. Rept. 8, 211 (1988).Google Scholar
8. Edelberg, E. A., Perry, A., Benjamin, N., and Aydil, E. S., Rev. Sci. Instrum. 70, 2689 (1999).Google Scholar
9. Edelberg, E. A., Perry, A., Benjamin, N., and Aydil, E. S., J. Vac. Sci. Technol. A 17, 506 (1999).10.1116/1.581612Google Scholar
10. Marra, D. C., Edelberg, E. A., Naone, R. L., and Aydil, E. S., Appl. Surf. Sci. 133, 148 (1998).Google Scholar
11. Kessels, W. M. M., Marra, D. C., Sanden, M. C. M. Van de, and Aydil, E. S., J. Vac. Sci. Technol. A, in press (2001).Google Scholar
12. Jansson, U. and Uram, K. J., J. Chem. Phys. 91, 7978 (1989).10.1063/1.457216Google Scholar
13. Uram, K. J. and Jansson, U., J. Vac. Sci. Technol. B 7, 1176 (1989).Google Scholar
14. Uram, K. J. and Jansson, U., Surf. Sci. 249, 105 (1991).Google Scholar
15. Burrows, V. A., Chabal, Y. J., Higashi, G. S., Raghavachari, K., and Christman, S. B., Appl. Phys. Lett. 53, 998 (1988).Google Scholar
16. Chabal, Y. J. and Raghavachari, K., Phys. Rev. 53, 282 (1984).Google Scholar
17. Chabal, Y. J., in Internal Reflection Spectroscopy: Theory and Applications, edited by Mirabella, J. Francis M. (Marcel Dekker, Inc., New York, 1993), p. 191.Google Scholar
18. Crowell, J. E. and Lu, G. J., J. Electron Spectrosc. Relat. Phenom. 54–55, 1045 (1990).Google Scholar
19. Marra, D. C., Ph.D. Thesis, University of California Santa Barbara, (2000).Google Scholar
20 Toyoshima, Y., Arai, K., Matsuda, A., and Tanaka, K., J. Non-Cryst. Solids 137–138, 765 (1991).Google Scholar
21. Olander, D. R., Balooch, M., Abrefah, J., and Siekhaus, W. J., J. Vac. Sci. Technol. B 5, 1404 (1987).10.1116/1.583625Google Scholar
22. Gates, S. M., Kunz, R. R., and Greenlief, C. M., Surf. Sci. 207, 364 (1989).Google Scholar
23. Gates, S. M., Greenlief, C. M., and Beach, D. B., J. Chem. Phys. 93, 7493 (1990).Google Scholar
24. Cheng, C. C., and Yates, J. J. T., Phys. Rev. B 43, 4041 (1991).Google Scholar
25. Wang, Y., Bronikowski, M. J., and Hamers, R. J., Surf. Sci. 311, 64 (1994).Google Scholar
26. Chiang, C.-M., Gates, S. M., Lee, S. S., Kong, M., and Bent, S. F., J. Phys. Chem. B 101, 9357 (1997).Google Scholar
27. Ramalingam, S., Maroudas, D., and Aydil, E. S., J. Appl. Phys. 84, 3895 (1998).Google Scholar
28. Ramalingam, S., Maroudas, D., Aydil, E. S., and Walch, S. P., Surf. Sci. 418, L8 (1998).10.1016/S0039-6028(98)00703-1Google Scholar
29. Ramalingam, S., Mahalingam, P., Aydil, E. S., and Maroudas, D., J. Appl. Phys. 86, 5497 (1999).Google Scholar
30. Walch, S.P, Ramalingam, S., Eray Aydil, S., and Maroudas, D., Chem. Phys. Lett. 329, 304 (2000).Google Scholar
31. Ramalingam, S., Maroudas, D., and Aydil, E. S., J. Appl. Phys. 86, 2872 (1999).10.1063/1.371136Google Scholar
32. Ramalingam, S., Ph.D. Thesis, University of California, Santa Barbara (2000).Google Scholar
33. Tersoff, J., Phys.Rev. Lett. 56, 632 (1986)10.1103/PhysRevLett.56.632Google Scholar
34. Tersoff, J., Phys. Rev. B 37, 6991 (1988).Google Scholar
35. Tersoff, J., Phys. Rev. B 38, 9902 (1988).10.1103/PhysRevB.38.9902Google Scholar
36. Ohira, O. Ukai, Adachi, T., Takeuchi, Y., and Murata, M., Phys. Rev. B 52, 8283 (1995)Google Scholar
37. Ohira, T., Ukai, O., Noda, M., Takeuchi, Y., Murata, M., and Yoshida, H., Mater. Res. Soc. Symp. Proc. 408, 445 (1996).Google Scholar
38. Doughty, D. A., Doyle, J. R., Lin, G. H., Gallagher, A., J. Appl. Phys. 67, 6220 (1990).Google Scholar
39. Ramalingam, S., Sriraman, S., Aydil, E. S., and Maroudas, D., Appl. Phys. Lett. 78, 2685 (2001).Google Scholar
40. Keudell, A. von and Abelson, J. R., Phys. Rev. B 59 5791 (1999).Google Scholar