Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T09:01:20.475Z Has data issue: false hasContentIssue false

In Situ Observation of Nucleation and Growth of Carbon Nanotubes from Iron Carbide Nanoparticles

Published online by Cambridge University Press:  01 February 2011

Hideto Yoshida
Affiliation:
[email protected], Osaka University, Osaka, Japan
Seiji Takeda
Affiliation:
[email protected], Osaka University, Osaka, Japan
Tetsuya Uchiyama
Affiliation:
[email protected], Osaka University, Osaka, Japan
Hideo Kohno
Affiliation:
[email protected], Osaka University, Osaka, Japan
Yoshikazu Homma
Affiliation:
[email protected], Osaka University, Osaka, Japan
Get access

Abstract

Nucleation and growth processes of carbon nanotubes (CNTs) in iron catalyzed chemical vapor deposition (CVD) have been observed by means of in-situ environmental transmission electron microscopy. Our atomic scale observations demonstrate that solid state iron carbide (Fe3C) nanoparticles act as catalyst for the CVD growth of CNTs. Iron carbide nanoparticles are structurally fluctuated in CVD condition. Growth of CNTs can be simply explained by bulk diffusion of carbon atoms since nanoparticles are carbide.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iijima, S., Nature 354, 354 (1991).Google Scholar
2. Iijima, S. and Ichihashi, T., Nature 363, 603 (1993).Google Scholar
3. Hata, K., Futaba, D. N., Mizuno, K., Namai, T., Yumura, M., and Iijima, S., Science 306, 1362 (2004).10.1126/science.1104962Google Scholar
4. Helveg, S., López-Cartes, C., Sehested, J., Hansen, P. L., Clausen, B. S., Rostrup-Nielsen, J. R., Ablid-Pedersen, F., and Nørskov, J. K., Nature 427, 426 (2004).Google Scholar
5. Sharma, R. and Iqbal, Z., Appl. Phys. Lett. 84, 990 (2004).Google Scholar
6. Yoshida, H. and Takeda, S., Phys. Rev. B 72, 195428 (2005).Google Scholar
7. Lin, M., Tan, J. P. Y., Boothroyd, C., Loh, K. P., Tok, E. S., and Foo, Y.-L., Nano Lett. 6, 449 (2006).10.1021/nl052356kGoogle Scholar
8. Hofmann, S., Sharma, R., Ducati, C., Du, G., Mattevi, C., Cepek, C., Cantoro, M., Pisana, S., Parvez, A., Cervantes-Sodi, F., Ferrari, A. C., Dunin-Borkowski, R., Lizzit, S., Petaccia, L., Goldoni, A., and Robertson, J., Nano Lett., 7, 602 (2007).10.1021/nl0624824Google Scholar
9. Yoshida, H., Uchiyama, T., and Takeda, S., Jpn. J. Appl. Phys., 46, L917 (2007).Google Scholar
10. Yoshida, H., Takeda, S., Uchiyama, T., Kohno, H., and Homma, Y., Nano Lett., 8, 2082 (2008).Google Scholar
11. Iijima, S. and Ichihashi, T., Phys. Rev. Lett. 56, 616 (1986).Google Scholar
12. Emmenegger, C., Bonard, J.-M., Mauron, P., Sudan, P., Lepora, A., Grobety, B., Züttel, A., and Schlapbach, L., Carbon, 41, 539 (2003).10.1016/S0008-6223(02)00362-7Google Scholar
13. Jung, Y. H., Wei, B., Vajtai, R., Ajayan, P. M., Homma, Y., Prabhakaran, K., and Ogino, T., Nano Lett. 3, 561 (2003).Google Scholar
14. Dai, H., Rinzler, A. G., Nikolaev, P., Thess, A., Colbert, D. T., and Smalley, R. E., Chem. Phys. Lett. 260, 471 (1996).10.1016/0009-2614(96)00862-7Google Scholar